

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 49 No. 39

24th- 30th Sep 2022

This is the last of a article that The link between COVID-19 infection and Cardio-vascular disease

Arrhythmias

As per the clinical case series, the occurrence of cardiac arrhythmia in patients with COVID-19 was 16.7% and it is more prevalent among patients who are admitted to intensive care units. Although mechanisms underlying the impact of COVID-19 on cardiac arrhythmias remain unclear, arrhythmia in COVID-19 patients might be caused by MI, cardiogenic shock, hypoxia, acidbase imbalance, and electrolyte disturbance 7.

Heart failure -

Heart failure is a common complication of COVID-19. The possible causes for heart failure in COVID-19 infection may include reduced diastolic function, pre-existing cardiovascular diseases, acute MI triggered by COVID-19, and sepsis-associated cardiac dysfunction '.

Abnormalities in coagulation-

Abnormalities in coagulation as evident by disseminated intravascular coagulation (DIC) and thromboembolic events are commonly present in COVID-19 patients. Furthermore, it was documented that abnormal coagulation parameters have a strong association with severe complications in COVID-19 patients. Furthermore, deep vein thrombosis and pulmonary embolism are also associated with COVID-19 infection 7

Patients with pre-existing cardiovascular disease

Patients who are diagnosed with preexisting cardiovascular diseases such as hypertension, diabetes mellitus and other

cardiovascular diseases are at high risk of acquiring SARS- CoV-2 $^7\!$. In patients with SARS-CoV-2 infection, underlying cardiovascular disease can provoke pneumonia and increase the severity of symptoms and eventually result in death. Cardiac insufficiency is a possible complication in patients with SARS-CoV-2. For patients with cardiac insufficiency who have underlying heart disease, SARS-CoV-2 infection might act as a trigger to worsen the condition and ultimately lead to death ⁶. It is thought that SARS-CoV-2 infection superimposed on pre-existing CVD may exacerbate the injury already present in the cardiovascular system. Thus, patients with pre-existing CVD should be triaged and treated with priority. However, it has not been shown any causative role of such co-morbidities to SARS-CoV-2 infection 7

COVID-19 pandemic effects on cardiovascular disease prevention

Figure 2 – COVID-19 pandemic effects⁵ (CV – Cardiovascular; ACS – Acute cor-onary syndrome; OHCA – Out-ofhospital cardiac arrest)

The effect on Primary Cardiovascular Prevention - Risk Factors (Primary prevention)

Regular physical activity is considered an

	- "ge
1. The link between COVID-19 infection and Cardio-vascular disease Part II	1
2. Summary of selected notifiable diseases reported ($17^{th} - 23^{rd}$ September 2022)	3
3. Surveillance of vaccine preventable diseases & AFP $(17^{\text{th}} - 23^{\text{rd}} \text{ September } 2022)$	4

LANKA 202

WER Sri Lanka - Vol. 49 No. 39

important factor for the primary and secondary prevention of cardiovascular disease. It lowers the mortality not only from cardiovascular causes but also from mortality from all other causes as well. It is recommended to engage in moderate exercise on most days of the week, amounting to a minimum of 150 min/week. However, the steps taken by the governments to stop the spread of COVID-19 infection banned all recreational activities, including sports clubs and sports events, and resulted in mandatory homestays. Inactive individuals have about a two-fold higher relative risk of coronary artery disease when compared with physically active people. Considering all the beneficial effects of physical activity on metabolic disorders, the immune system, mental health and several non-cardiovascular diseases, the impact of this forced lockdown may be detrimental. The food habits of the people have changed during the COVID-19 pandemic. A review of twelve articles analyzing the preliminary effects of the quarantine on dietary habits revealed a sharp rise in carbohydrate sources consumption, especially those with a high glycemic index, such as homemade pizza, as well as frequent snacks. Eating more and eating junk food and fried foods more than before have also been noted during the pandemic ⁵.

The effect on acute cardiac care

During the COVID-19 pandemic, the number of persons who are presenting to emergency departments of hospitals has reduced. It was due to the fear of contracting the COVID-19 infection in a hospital setting and their willingness not to add an extra burden to the healthcare system. It revealed some persons' hesitancy to activate the emergency medical system (EMS), which itself has been focused on managing the pandemic. The coronavirus pandemic has changed the population's approach to the health system and the way healthcare services are delivered ⁵. Admission rates due to acute myocardial infarction had reduced during the COVID-19 outbreak compared to a control period in 2019 according to a study done in Italy. They found a 50% reduction of admissions due to acute myocardial infarction across Italy, together with an increase in fatality and complication rates. This trend was more significant for Non-STelevation myocardial infarction (NSTEMI) than for STelevation myocardial infarction (STEMI) 8. Furthermore, hospitalization due to heart failure, arrhythmias, valvular heart disease, arterial hypertension, and peripheral vascular disease had reduced. The reduction was 40 % according to a study done in Germany 9. Another study done in London showed a marked decline in hospitalization rates for acute heart failure. Also, they had presented with higher rates of more severe symptoms and NY-HA class III/IV. It showed that the patients with milder clinical conditions have avoided presenting to the hospital 10

Out-of-hospital cardiac arrest (OHCA), had also increased as documented in several studies. It is strongly associated with the progressive outbreak of COVID-19¹¹.

The effect on cardiac rehabilitation programmes

It is very important to assure appropriate chronic clinical care following a cardiac event. It is well established that delaying the start of cardiovascular rehabilitation may

24th- 30th Sep 2022

result in less improvement after a cardiac event. When facing the COVID-19 pandemic, many hospitals had to close non-urgent outpatient care, day cases, and also centre-based cardiovascular rehabilitation programmes. When these programmes aiming at exercise-based rehabilitation were not conducted following a MI the mortality and re-hospitalization following discharge increased. Also, people with heart failure had a 40% higher risk of hospitalization if a proper rehabilitation programme is lacking ⁵.

Home-based cardiac rehabilitation, centre-based rehabilitation and hybrid cardiac rehabilitation (a combination between centre-based and home-based rehabilitation) show that home-based cardiac rehabilitation can be a valid alternative program for patients with heart failure. In this circumstance, telemedicine helps to make sure constant monitoring of patient's activity and safety during exercise. It was observed that an alternative homebased cardiac telerehabilitation model designed for people with coronary heart disease, during the period of COVID-19 quarantine was able to increase cardiorespiratory fitness

Compiled by: Dr Morina Fernando Epidemiology Unit

References

- World Health Organization. Coronavirus disease [Internet]. 2022. [Cited 2022 September 3]. Available from: <u>https://</u> www.who.int/health-topics/coronavirus#tab=tab_1
- Centres for Disease Control and Prevention. COVID 19 [Internet]. 2020 [Cited 2022 September 3]. Available from: <u>https://</u> <u>www.cdc.gov/coronavirus/types.html</u>
- Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A et al. COVID-19 and cardiovascular disease. Circulation. 2020 May 19; 41:1648-1655.
- World Health Organization. Cardiovascular diseases [Internet]. 2021 [Cited 2022 September 3]. Available from: <u>https://</u><u>www.who.int/news-room/fact-sheets/detail/cardiovascular-</u><u>diseases-(cvds)</u>
- Pina A, Castelletti S. COVID-19 and Cardiovascular Disease: a Global Perspective. Curr Cardiol Rep. 2021 Aug 19; 23 (10):135. Available from: <u>https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC8374116/</u> DOI: 10.1007/s11886-021-01566-4.
- Srivastava K. Association between COVID-19 and cardiovascular disease. Int J Cardiol Heart Vasc. 2020 Jul 14; 29:100583. Available from <u>https://www.ncbi.nlm.nih.gov/pmc/articles/</u> <u>PMC7359796/</u> DOI: 10.1016/j.ijcha.2020.100583.
- Liu F, Liu F, Wang L. COVID-19 and cardiovascular diseases. Journal of Molecular Cell Biology. 2021 13(3): 161-167. Available from <u>https://doi.org/10.1093/jmcb/mjaa064</u>
- De Rosa S, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J. 2020;41:2083–2088. DOI: 10.1093/eurheartj/ehaa409. Available from <u>https://pubmed.ncbi.nlm.nih.gov/32412631/</u>
- Bollmann A, Pellissier V, Hohenstein S, Konig S, Ueberham L, Meier-Hellmann A, et al. Cumulative hospitalization deficit for cardiovascular disorders in Germany during the Covid-19 pandemic. Eur Heart J Qual Care Clin Outcomes. 2020. Available from <u>https://www.ncbi.nlm.nih.gov/pmc/articles/</u> PMC7499594/
- Kiss P, Carcel C, Hockham C, Peters SAE. The impact of the COVID-19 pandemic on the care and management of patients with acute cardiovascular disease: a systematic review. Eur Heart J Qual Care Clin Outcomes. 2021;7: 18–27. Available from <u>https://www.ncbi.nlm.nih.gov/pmc/articles/</u> <u>PMC7665454/</u>
- Baldi E, Sechi GM, Mare C, Canevari F, Brancaglione A, Primi R,et al. Treatment of out-of-hospital cardiac arrest in the COVID-19 era: a 100 days experience from the Lombardy region. PLoS One. 2020;15:e0241028. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580972/
 Batalik L, Konecny V, Dosbaba F, Vlazna D, Brat K. Cardiac re-
- Batalik L, Konecny V, Dosbaba F, Vlazna D, Brat K. Cardiac rehabilitation based on the walking test and telerehabilitation improved cardiorespiratory fitness in people diagnosed with coronary heart disease during the COVID-19 pandemic. Int J Environ Res Public Health. 2021 Feb 24;18(5):2241. https:// doi.org/10.3390/ijerph18052241.

WER Sri Lanka - Vol. 49 No . 39

24th- 30th Sep 2022

ab	le 1:	: Se	elect	ted	noti	fiab	le d	ise	ases	s rei	port	ed b	ov M	edi	cal (Offic	cers	of I	lea	lth	1	7 th -	23 rd	Se	p 20)22 (38 th	[•] We	ek)
	* 5	97	86	52	98	100	94	100	100	100	93	100	80	94	63	66	94	86	98	91	97	66	100	66	6 3	98	100	96	
WRCD	*	15	9	15	12	18	27	13	16	31	64	26	18	H	21	38	10	17	10	15	6	15	17	11	13	10	30	18	
mania-	в	2	29	2	33	262	0	0	410	220	1	2	0	4	÷	1	13		378	4	316	406	19	116	174	18	0	2412	
Leish	A	0	0	0	0	m	0	0	∞	9		0	0	0	0	0	0	0	11	0	12	13		2		0	0	58	
ngitis	В	11	33	22	8	H	9	18	17	9	11	ε	15	0	2	30	24	∞	36	24	46	4	13	43	51	41	34	507	
Menir	A	Ч	0	2		0	0	0	0	0	0	Η	0	0	0	0	2	0	4	0		0	0	4		0	2	19	
kenpox	8	36	46	59	63	35	35	62	28	39	93	4	9	27	2	27	43	38	75	18	61	19	47	55	99	84	49	1122	
Chic	A	m			4	2	2	Ч	m	0	4	0	0	0	0	0	0		2	m	0	2		m		2		37	
	8	7	4	4	0		0	0	0	0	4	0	0	0	0		0	0	2	0		0	0	0	0	0	0	19	
Hume	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hepa-	8	ъ	10	ъ	6	S	9	9	9	H	~	0	2	0	0	Ч		4	H	Ч	2	ß	124	51	24	∞	H	285	
Viral	۷	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	ω	ω	0	0	0	~	
	8		0	4	31	ഹ	13	29	41	12	432	12	m	Н	S	0		m	27	∞	22	0	48	28	21	18	H	766	
Typhi	A		0	0	0	0		7	m	0	6	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	18	
spirosis	в	156	176	334	133	83	75	358	196	215	20	11	23	18	25	37	87	25	127	25	154	100	209	241	788	414	23	4053	
Lepto	A	9	7	33	б	ω	m	20		7	0	0	0	0	0	0	0	0	0	1	0	2	8	4	14	15	н	13	
d Poi-	В	9	12	9	11	0	ъ	0	2	Ч	60	24	0	0	9	21	17	2	4	0	7	2	14	e	28	8	9	245	
E E	۲	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	22	
ric Fever	8			2	m	0	m	0	0	0	58	ω	0	2	2	0	0		0	Ч		0		4	m	H	2	89	
Ente	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
phaliti	ш	m				0	0		0	7	m	0	0	Н	0	∞		0	2	Ч	2		7	Ч	9	∞		46	
Ence	¥	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
entery	8	4	ы	24	19	∞	21	10	32	12	63	~	2	ω	S	58	₽	25	20	m	11	9	23	9	40	14	31	463	
r Dys	A	0	0	0	0	0	0		2	0	1	0	0	0	0	4	0		0	0	0	0	2	0	0	0	0	t 21	
ue Feve	8	10023	6345	3184	4228	940	192	3070	1377	1432	2642	107	178	71	56	1051	140	1005	2257	1755	394	129	878	408	2460	2407	955	47684	
Deng	A	81	58	39	60	43	2	39	16	25	47	4	0	0		13	ω	ы	23	35		ъ	14	7	22	36	20	62	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Page 3

WER Sri Lanka - Vol. 48 No. 39

Table 2: Vaccine-Preventable Diseases & AFP

17th- 23rd Sep 2022 (38th Week)

24th- 30th Sep 2022

Disease		N	lo. of	Case	es by	y Pro	ovino	Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date			
	w	С	S	N	E	NW	NC	U	Sab	week in 2022	week in 2021	2022	2021	in 2022 & 2021	
AFP*	00	00	00	00	00	00	00	00	00	00	02	53	48	10.4 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	00	00	01	00	00	00	00	01	00	68	58	17.2 %	
Measles	00	00	00	00	00	00	00	00	00	00	00	17	11	54.5 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	05	02	150 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	01	01	04	- 75 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %	
Tuberculosis	00	00	50	04	07	44	43	02	12	162	83	5006	3708	35.0 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna, KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10