

LANKA 202

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 49 No. 16

16th- 22nd Apr 2022

Application of digital technologies for infectious disease surveillance, prevention and control Part II

Application of Digital technologies during COVID-19 Pandemic

Those with red or yellow codes were directed to undergo 7 to 14 days of quaran-

Digital Technologies for COVID-19

Budd, J., Miller, B.S., Manning, E.M. et al. Digital technologies in the public-health response to COVID-19.

Nat Med 26, 1183–1192 (2020). https://doi.org/10.1038/s41591-020-1011-4

The exponential rise in the application of digital technologies to mitigate the transmission of COVID-19 was observed globally. In the year 2020, at the early stages of the pandemic, (on the 11th of February) use of digital technologies in COVID-19 was observed in China with the application of the health status code first launched in Hangzhou city, Zhejiang. Based on big data and mobile internet technologies, residents and those entering the city need to apply online and receive either a green, red, or yellow code. The colours are based on the information reported by the applicants, including their state of health, travel history, and whether they contacted people from epidemic areas. People with green codes were allowed to travel in the city.

tine before the free movement. According to the classification, the government restricts the travel of people with potential infection but allows healthy people to travel freely and resume work. Based on a summary of local experience, the Chinese government promoted a unified health code system throughout the country. Many countries including Sri Lanka adopted such systems which were modified for the local context. To track disease activity in real-time, many countries adopted data dashboards; migration maps; machine learning; realtime data from smartphones and wearable technology. In Sri Lanka, the concept of using data dashboards in disease surveillance was widely used during the COVID-19 pandemic. To screen the population for COVID-19, digital technological solutions

Contents 1. Application of digital technologies for infectious disease surveillance, prevention and control Part II 2. Summary of selected notifiable diseases reported (09th - 15th Apr 2022) 3. Surveillance of vaccine preventable diseases & AFP (09th - 15th Apr 2022) 4

like artificial intelligence, digital thermometers, mobile phone applications, thermal cameras, and web-based toolkits were used. In Sri Lanka, the use of digital thermometers and mobile phone applications was observed during the pandemic for screening purposes. In addition, to identify high-risk individuals or susceptible individuals, global positioning systems, mobile phone applications, real-time monitoring of mobile devices, and wearable technology were used globally.

The COVID-19 pandemic truly accelerated the application of digital technologies in disease surveillance and opened new avenues for digital applications in outbreak management.

This article was not intended to provide detailed insight into digital applications the infectious disease surveillance, prevention, and control but to provide a brief description with important examples of the use of digital technologies in disease surveillance outside the routine information management systems.

Compiled by:

Dr Malith Kumarasinghe Senior Registrar in Community Medicine **Epidemiology Unit**

References

Donelle L, Hall J, Hiebert B, et al. Digital technology and disease surveillance in the COVID-19 pandemic: a scoping review protocol. BMJ Open. 2021;11(10):e053962. Published 2021 Oct 29. doi:10.1136/bmjopen-2021-053962

European Centre for Disease Prevention and Control. Digital technologies for the surveillance, prevention and control of infectious diseases - A scoping review of the research literature. 2019. https://www.ecdc.europa.eu/ en/publications-data/digital-technologies-surveillanceprevention-and-control-infectious-diseases

Nsoesie EO, Kluberg SA, Mekaru SR, et al. New digital technologies for the surveillance of infectious diseases at mass gathering events. Clin Microbiol Infect. 2015;21 (2):134-140. doi:10.1016/j.cmi.2014.12.017

RAND. Assessment of digital technologies for infectious disease surveillance, prevention and control. 2022. https://www.rand.org/randeurope/research/projects/ using-digital-tech-for-disease-surveillance.html

Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in COVID-19 pandemic planning and response [published correction appears in Lancet Digit Health. 2021 Mar;3(3):e147]. Lancet Digit Health. 2020;2(8):e435-e440. doi:10.1016/S2589-7500 (20)30142-4

Table 1: Water Quality Surveillance Number of microbiological water samples March 2022

District	MOH areas	No: Expected	No: Received
Colombo	15	90	NR
Gampaha	15	90	NR
Kalutara	12	72	NR
Kalutara NIHS	2	12	NR
Kandy	23	138	NR
Matale	13	78	NR
Nuwara Eliya	13	78	NR
Galle	20	120	NR
Matara	17	102	NR
Hambantota	12	72	12
Jaffna	12	72	NR
Kilinochchi	4	24	NR
Manner	5	30	0
Vavuniya	4	24	NR
Mullatvu	5	30	NR
Batticaloa	14	84	NR
Ampara	7	42	NR
Trincomalee	11	66	NR
Kurunegala	29	174	12
Puttalam	13	78	NR
Anuradhapura	19	114	6
Polonnaruwa	7	42	22
Badulla	16	96	NR
Moneragala	11	66	NR
Rathnapura	18	108	NR
Kegalle	11	66	0
Kalmunai	13	78	NR

* No of samples expected (6 / MOH area / Month)

NR = Return not received

Tab	ble 1: Selected notifiable diseases reported by Medical Officers of Health 09th- 15th Apr 2022 (15th Week)																												
	**	100	72	H	96	100	100	100	100	100	88	100	81	82	100	100	100	92	100	92	88	88	100	100	92	100	100	95	
WRCD	<u>*</u>	7	10	4	2	14	œ	Ŋ	12	16	48	30	21	7	22	29	7	19	2	11	Ŋ	7	Ŋ	Ŋ	9	Ŋ	23	11	
ania-			9	0	2	135	0	0	154	98	0	1	0	0		Н	7	0	155	3	166	130	7	43	74	6	0	981	
Leishmania-	A	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	7		1	6	0	7	0	0	0	16	
tis		т	4	10	2	П	0	6	3	က	4	0	13	0	0	16	9	7	6	10	12	7	9	12	12	15	10	164	
Meningitis	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	П	—	0	0	m	
		6	6	22	17	7	8	25	12	7	43	m	0	2	3	2	22	9	56	3	17	2	18	19	24	27	10	349	
Chickenpox	m	0	1	-	1		0	0	0	0	0		0	0	0	0	0	т		0	1	0	0	н	н	0	0	12 3	
0	<	0	1	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	4	
Human	B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hep-	В		7	П	4		0	П	1		2	0	1	0	0	П	-	4	0	0	7	0	32	18	6	7	0	84	
Viral H	_ _	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	Н		0	0	9	
		0	0	7	11	7	7	9	15	ر ک	331	9	2	-	m	0	1	1	12	m	14	0	10	10	7	7	-	457	
Typhus	B	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	_	0	0	0	0	П	0	0	0	o	
	⋖	59	28	91	23	17	18	122	52	20	16	1	10	9	6	15	59	9	28	7	29	45	70	102	211	127	м	179	
Leptospirosis	8																											11	
Le	<	0	0	П	0	0	1	7	_	0		0	0	П	0	0	0	0	0	0	0	4	5	7	7	4	0	5 24	
Food Poi-	8	2	9	2	3	0	0	0	0	0	14	11	0	0	1	2	0	7	-	0	2	1	2	2	15	4	4	86	
	⋖	7	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	9	
ric Fev	8	0	0	П	0	0	0	0	0	0	38	0	0	П	7	0	0	1	0	0	П	0	0	4	Н	П	0	20	
Ente	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	-	
Encephaliti Enteric Fever	8		0	0	0	0	0	0	0	0	2	0	0	H	0	2	н	0	Н	0	0	0	0	0	2	7	0	18	
	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	-	
sentery	a	7	4	4	m	0	7	П	23	4	6	4	П	0	2	31	9	20	9	0	7	m	4	2	13	4	18	181	
ır Dyş	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	7	0	1	0	4	
Dengue Fever Dysentery	8	2382	1975	814	577	139	23	727	232	261	1121	48	142	43	25	409	46	434	1037	828	136	45	373	103	645	415	246	13250	
Deng	⋖	27	45	53	19	9	П	∞	2	0	73	0	0	7	0	40	0	53	12	∞	0	П	∞	4	10	21	19	36	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Table 2: Vaccine-Preventable Diseases & AFP

09th - 15th Apr 2022 (15th Week)

Disease		N	lo. of	Case	es by	y Pro	ovino	е	Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	W	С	S	N	Е	NW	NC	U	Sab	week in 2022	week in 2021	2022	2021	in 2022 & 2021
AFP*	01	01	00	00	00	00	00	01	00	03	01	25	17	5.4 %
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Mumps	00	00	00	00	00	00	00	00	00	00	02	13	34	- 61.7 %
Measles	00	00	00	00	00	00	00	00	00	00	01	10	06	100 %
Rubella	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Tetanus	00	00	00	00	00	00	00	00	00	00	00	01	01	0 %
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %
Whooping Cough	00	00	00	00	00	00	00	01	00	01	00	01	00	0 %
Tuberculosis	00	00	00	00	00	00	00	00	00	00	158	2265	1998	13.3 %

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Influenza Surveillance in Sentinel Hospitals - ILI & SARI												
M. d	Human		Animal									
Month	No Total	No Positive	Infl A	Infl B	Pooled samples	Serum Samples	Positives					
April												
Source: Medical Research Institute & Veterinary Research Institute												

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10