

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 49 No. 03 15th – 21st Jan 2022

Household Air Pollution

Indoor air pollution and household energy

Everyday activities such as cooking, cleaning, painting and decorating can cause indoor air pollution. The use of polluting fuel for cooking, burning of garbage, paint particles, and chemical sprays, largely contribute to household indoor air pollution. Household air pollution was responsible for an estimated 3.2 million deaths across the world in the year 2020, which included 237,000 deaths among children. Most of these are in low- and middle-income countries. It is found that women and children are the most affected by household indoor pollution.

Impacts on health

Particular matter and other pollutants in household air inflame the lungs and airways and reduce the oxygen-carrying capacity of the blood resulting in several diseases. It is estimated that 3.2 million people a year die prematurely from illness attributable to household air pollution caused by the inefficient use of solid fuels (2020 data). Among these deaths:

- 21% are due to lower respiratory tract infection
- 23% from stroke
- 32% from ischaemic heart disease
- 19% from chronic obstructive pulmonary disease (COPD), and
- 6% from lung cancer.

Pneumonia

Exposure to household air pollution almost doubles the risk for childhood pneumonia. 44% of all deaths among children less than 5 years old from acute lower respiratory infections (ALRI) are due to particulate matter inhaled from indoor

air pollution from household solid fuels. Indoor air pollution also contributes to nearly 22% of deaths among adults due to pneumonia.

Stroke

Approximately 12% of all deaths due to stroke can be attributed to chronic exposure to household air pollution caused by cooking with solid fuels

Ischaemic heart disease

Approximately 12% of all deaths due to ischaemic heart disease, which accounts for over a million premature deaths per year, can be attributed to exposure to household air pollution.

Chronic obstructive pulmonary disease

Over one-fifth or 23% of all deaths from chronic obstructive pulmonary disease (COPD) among adults in low and middle-income countries are due to exposure to household air pollution. Women exposed to high levels of indoor smoke are 2.3 times as likely to suffer from COPD than women who use cleaner fuels. Among men, exposure to indoor smoke nearly doubles that risk.

Lung cancer

Approximately 11% of lung cancer deaths in adults are attributable to exposure to carcinogens from household air pollution caused by cooking with solid fuels like wood, charcoal, or coal. The risk for women is higher, due to their role in food preparation.

Other health impacts and risks

More generally, small particulate matter and other pollutants in indoor smoke inflame the airways and lungs, impairing immune response

Contents	Page
1. Household Air Pollution	1
2. Summary of selected notifiable diseases reported (08th $-$ 14th Jan 2022)	3
3. Surveillance of vaccine preventable diseases & AFP ($08^{th} - 14^{th}$ Jan 2022)	4

and reducing the oxygen-carrying capacity of the blood. Household air pollution contributes to the loss of an estimated 86 million healthy life years in the year 2019.

Almost half of the deaths among children less than five years are due to lower respiratory tract infection. There is also evidence of links between household air pollution and low birth weight, tuberculosis, cataract, nasopharyngeal and laryngeal cancers. Mortality from ischemic heart disease and stroke are also affected by risk factors such as high blood pressure, unhealthy diet, lack of physical activity and smoking. Some other risks for childhood pneumonia include suboptimal breastfeeding, underweight and second-hand smoke. For lung cancer and chronic obstructive pulmonary disease, active smoking and second-hand tobacco smoke are also main risk factors.

Impacts on health equity, development, and climate change

It is required to have significant policy changes to achieve the sustainable development goals for 2030, increase the number of people having access to clean fuels and technologies and mitigate climate change.

- Fuel gathering consumes considerable time for women and children, limiting other productive activities and taking children away from school. In less secure environments, women and children are at risk of injury and violence during fuel gathering.
- The use of kerosine oil for cooking, lighting, and heating is also linked to the risk of burns ad injuries, ingestion, and poisoning.
- Black carbon (sooty particles) and methane emitted by inefficient stove combustion are powerful climate change pollutants.
- The lack of access to electricity for over 750 million people has forced them to depend on polluting fuels that cause household air pollution.
- Household air pollution is largely contributing to outdoor air pollution.

WHO's response

WHO is leading to evaluate of which new household cooking technologies and fuels produce the least emissions and thus are most optimal for health. WHO also provides technical support to countries in their evaluations and scale-up of health-promoting stove technologies.

Other WHO activities include the following:

New indoor air quality guidelines for household fuel combustion

To ensure healthy air in and around the home, WHO's new indoor air quality guidelines for household fuel combustion provide health-based recommendations about the performance of fuels, and stoves as well as strategies for the effective dissemination of such home energy technologies to protect the health.

Household energy database

The WHO Household Energy Database is used to monitor global progress in the transition to cleaner fuels and improved

stoves as well as contribute to assessments of disease burden from household energy and the energy access situation in developing countries.

Research and programme evaluation

WHO is working with countries, researchers, and other partners to harmonize methods of evaluation across settings so that health impacts are assessed consistently and rigorously and incorporate economic assessment of health benefits.

Convenes Global health and energy platform of action (HEAP)

This helps to strengthen the corporation between the health and energy sectors to ensure universal access to clean energy sources for households and health care facilities.

Compiled by.

Dr. Dilini Mataraarachchi

Senior Registrar in Community Medicine, Epidemiology Unit, Ministry of Health

Table 1 : Water Quality Surveillance Number of microbiological water samples December 2021											
District	MOH areas	No: Expected *	No: Received								
Colombo	15	90	NR								
Gampaha	15	90	NR								
Kalutara	12	72	NR								
Kalutara NIHS	2	12	NR								
Kandy	23	138	NR								
Matale	13	78	NR								
Nuwara Eliya	13	78	NR								
Galle	20	120	NR								
Matara	17	102	NR								
Hambantota	12	72	NR								
Jaffna	12	72	NR								
Kilinochchi	4	24	NR								
Manner	5	30	NR								
Vavuniya	4	24	NR								
Mullatvu	5	30	NR								
Batticaloa	14	84	NR								
Ampara	7	42	NR								
Trincomalee	11	66	NR								
Kurunegala	29	174	NR								
Puttalam	13	78	NR								
Anuradhapu- ra	19	114	NR								
Polonnaruwa	7	42	NR								
Badulla	16	96	NR								
Moneragala	11	66	NR								
Rathnapura	18	108	NR								
Kegalle	11	66	NR								
Kalmunai	13	78	NR								
* No of samples	* No. of samples expected. (6 / MOH area / Month)										

NR = Return not received

Table 1: Selected notifiable diseases reported by Medical Officers of Health 08th - 14th Jan 2022 (02nd Week)

abi			eleci	Lou		IIab		.000		. • •			,		iai (ers	OI I	пеа			O"'-	14"			122 (ek)
	* 5	100	72	100	86	100	100	100	100	100	88	100	06	100	100	100	100	92	100	92	93	88	100	100	95	100	100	92	
WRCD	<u>*</u>	m	0	0	7	4	4	0	0	9	32	22	33	0	17	25	21	23	0	13	0	0	0	0	0	0	19	9	
Leishmania-	8	1	0	0	0	19	0	0	36	14	0	0	0	0	0	0	0	0	24	0	32	17	1	2	8	1	0	158	
Leish	<	0	0	0	0	12	0	0	15	7	0	0	0	0	0	0	0	0	10	0	16	7	Н	4	2	П	0	78	
ngitis	В	0	2	0	0	0	0	1	0	1	0	0	4	0	0	4	1	7	1	က	2	0	1	7	0	က	1	28	
Meningitis	⋖	0	0	0	0	0	0	0	0	Н	0	0	0	0	0	2	0	0	П	7	0	0	0	П	0	П	0	œ	
Chickenpox	В	0	2	2	4	1	0	1	0	0	9	0	0	0	0	1	2	0	2	0	1	0	1	0	1	1	0	31	
Chick	⋖	0	0	4	2	0	0	Н	0	0	4	0	0	0	0	0	П	0	7	0	0	0	0	0	-	0	0	12	
_	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	-	
Humar	<	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hep-	В	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0	0	4	0	0	-	0	7	2	1	0	0	17	
Viral	4	0	0	0	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	Н	П	0	0	Ŋ	
S	8	0	0	0	0	0	0	2	3	0	63	1	0	0	0	0	0	0	2	1	Н	0	2	0	2	0	0	77	
Typhus	<	0	0	0	0	0	0	Н	0	0	20	0	0	0	0	0	0	0	П	0	0	0		0	2	0	0	22	
Leptospirosis	В	7	9	13	10	9	2	32	11	2	4	0	0	1	2	m	6	П	12	2	19	17	20	22	69	48	1	322	
Leptos	<	7	0	9	4	m	0	7	2	П	-	0	0	н	П	н	0	0	4	н	∞	က	13	က	23	17	0	10	
Poi-	В	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	9	7	0	11	
Food	<	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	
Enteric Fever	В	0	0	0	0	0	0	0	0	0	8	0	0	0	2	0	0	П	0	0	0	0	0	Н	1	Н	0	14	
	<	0	0	0	0	0	0	0	0	0	7	0	0	0	Н	0	0	0	0	0	0	0	0	0	1	П	0	10	
Encephaliti	В	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-	0	0	0	0	0	7	0	0	4	
Encel	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
Dysentery	В	П	0	0	2	0	0	0	7	0	1	0	0	0	0	2	2	П	1	0	0	Н	3	0	7	П	m	22	
	∢	П	0	0	0	0	0	0	0	0	0	0	0	0	0	П	Н	0	0	0	0	-	Н	0	1	Н	Н	∞	
Dengue Fever	В	788	801	177	179	30	8	139	22	45	202	10	22	9	4	64	21	25	309	222	53	13	128	13	144	86	13	3604	
Deng	⋖	31	32	75	78	12	9	29	17	25	91	Н	18	က	2	30	2	19	11	87	14	2	47	4	72	49	10	14	
RDHS		Colombo	Gampaha	Kalutara	Kandy		luwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi		avuniya	Mullaitivu	Batticaloa	Ampara	rincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Table 2: Vaccine-Preventable Diseases & AFP

08th - 14th Jan 2022 (02nd Week)

Disease		N	lo. of	Case	es by	y Pro	ovino	e	Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date		
	W	С	s	N	Е	NW	NC	U	Sab	week in 2022	week in 2021	2022	2021	in 2022 & 2021	
AFP*	00	00	00	00	00	00	00	00	00	00	00	72	01	100 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	01	00	00	00	00	00	00	01	03	01	03	- 66.6 %	
Measles	00	00	00	00	00	00	00	00	00	00	01	00	01	0 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	01	01	00	01	00	0 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese En- cephalitis	00	00	00	00	00	01	00	00	00	01	00	01	00	0 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tuberculosis	27	06	01	09	01	00	00	02	09	55	106	171	181	- 5.5 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Influenza Surveillance in Sentinel Hospitals - ILI & SARI													
Manah	Human		Animal										
Month	No Total	No Positive	Infl A	Infl B	Pooled samples	Serum Samples	Positives						
January													
Source: Medical	Source: Medical Research Institute & Veterinary Research Institute												

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10