

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

I LANKA 202

Vol. 48 No. 49

Dengue Part V

This is last part of the series of five articles

In DHF an increased vascular permeability leads to plasma leakage into the extravascular compartment causing haemoconcentration and decreased blood pressure. Pleural effusion, ascites, hypoproteinaemia and haemoconcentration are seen in patients with severe plasma leakage²³. Hepatomegaly and mid/right-epigastric pain is common²⁴. Haemorrhagic manifestations of dengue vary from mild petechiae and purpura, through moderate gum bleeding, epistaxis, haematuria and ecchymotic patches to severe menorrhagia and gastrointestinal bleeding.

In Dengue Shock Syndrome (DSS) the patient goes into circulatory failure and is at risk of dying unless managed appropriately. They can also develop severe haemorrhagic manifestations such as haematemesis, malena and menorrhagia during prolonged shock. Hepatitis, myocarditis, pancreatitis and encephalitis are rare manifestations.

In DHF or DSS the rapid deterioration of the patient's condition, shortly after the defervescence of fever, is termed the 'critical phase' and typically lasts 24-48 hours. When properly treated, convalescence is usually short and uneventful

27th - 03rd Dec 2021

In convalescence, plasma leakage subsidies and extravasated fluids are reabsorbed, leading to

hypervolaemia and increased urine output. Simultaneously white cell count begins to rise followed by the platelet count²³. Supportive treatment of fever and fluid management are the cornerstones of management of Dengue in the absence of either a specific remedy or a globally effective vaccination

Antibody-dependent enhancement is seen in serial dengue infections with different serotypes. Primary infection gives rise to protective type-specific antibodies, which do not protect against the other DENV serotypes but enhance the secondary infection²⁴. This is seen when infants develop DHF/DSS during their first dengue infection when maternal polyclonal dengue antibodies have degraded below protective levels

Diagnosis of Dengue

"Virus isolation methods

The virus may be isolated from the blood

Contents	Page
1. Dengue Part V	1
2. Summary of selected notifiable diseases reported ($20^{\text{th}} - 26^{\text{th}} \operatorname{Nov} 2021$)	3
3. Surveillance of vaccine preventable diseases & AFP (20th – 26th Nov 2021)	4

WER Sri Lanka - Vol. 48 No. 49

during the first few days of infection. Various reverse transcriptase–polymerase chain reaction (RT–PCR) methods are available and are considered the gold standard. However, they require specialised equipment and training for staff to perform these tests.

The virus may also be detected by testing for a virusproduced protein, called NS1. There are commerciallyproduced rapid diagnostic tests available for this, and it takes only ~20 mins to determine the result and the test does not require specialized laboratory techniques or equipment.

Serological methods

Serological methods, such as enzyme-linked immunosorbent assays (ELISA), may confirm the presence of a recent or past infection, with the detection of anti-dengue antibodies. IgM antibodies are detectable ~1 week after infection and remain detectable for about 3 months. The presence of IgM is indicative of a recent DENV infection. IgG antibody levels take longer to develop and remain in the body for years. The presence of IgG is indicative of a past infection

Treatment of Dengue

"There is no specific treatment for dengue fever. Patients should rest, stay hydrated and seek medical advice. Depending on the clinical manifestations and other circumstances, patients may be sent home, be referred for in-hospital management, or require emergency treatment and urgent referral.

Supportive care such as fever reducers and pain killers can be taken to control the symptoms of muscle aches and pains, and fever.

• The best options to treat these symptoms are acetaminophen or paracetamol.

 NSAIDs (non-steroidal anti-inflammatory drugs), such as ibuprofen and aspirin should be avoided. These anti-inflammatory drugs act by thinning the blood, and in a disease with a risk of haemorrhage, blood thinners may exacerbate the prognosis.

For severe dengue, medical care by physicians and

nurses experienced with the effects and progression of the disease can save lives – decreasing mortality rates to less than 1% in the majority of the countries

Vaccination against dengue

"The first dengue vaccine, Dengvaxia® (CYD-TDV) developed by Sanofi Pasteur was licensed in December 2015 and has now been approved by regulatory authorities in ~20 countries. In November 2017, the results of additional analysis to retrospectively determine serostatus at the time of vaccination were released. The analysis showed that the subset of trial participants who were inferred to be seronegative at the time of first vaccination had a higher risk of more severe dengue and hospitalizations from dengue compared to unvaccinated participants. As such, the use of the CYD-TDV vaccine is targeted at persons living in endemic areas, 9-45 years of age, who have had at least 1 episode of dengue virus infection in the past. Several additional dengue vaccine candidates are under evaluation."

Compiled by:

Dr Thilanka Bandara (MBBS, MSc. Community Medicine) Medical Officer Epidemiology Unit

References

- Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al.
- (2013). The global distribution and burden of dengue. Nature, 496(7446), 504– 507.https://doi.org/10.1038/nature12060
- Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G.,
- Hay, S. I. (2012). Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus.PLoS Neglected Tropical Diseases, 6(8), e1760.https://doi.org/10.1371/journal.pntd.0001760 (Kyle & amp; Harris, 2008)
- Kyle, J. L., & Harris, E. (2008). Global Spread and Persistence of Dengue. Annual Review of Microbiology, 62(1), 71–92. https://doi.org/10.1146/ annurev.micro.62.081307.163005 (WHO-SEARO, 2011)

```
Cader, M., Kodithuwakku, L., Rajapakshe, O., Kodituwakku, K. A. L. C., Rajapakshe, O.
```

B. W., et al. (2019). Sustainable dengue prevention through enhanced premise inspection. Paper presented at the Ascent 2019- International Conference on CapacityBuilding for Research and Innovation in Disaster Resilience, Colombo, Sri

WER Sri Lanka - Vol. 48 No . 49

27th-03rd Dec 2021

Та	ıbl	e 1:	: Se	elect	ed	noti	fiab	ole d	isea	ases	rep	ort	ed k	oy N	ledi	cal	Offi	cers	s of	Hea	alth	2	20 ^{th-}	- 26 ^t	h No	ov 2	021	(48 ^t	h We	ek)
		°*	100	74	0 6	100	100	100	100	100	100	88	100	100	100	100	100	100	100	100	96	91	100	100	100	95	100	100	97	teness
000.00	WKCD	*⊢	46	23	34	57	50	29	38	68	43	21	51	34	36	22	47	56	25	35	38	23	36	42	51	34	41	44	40	41 Comple
	mania-	в	Ч	13	0	31	259		2	480	304	2				0	0	14		382	10	288	476	21	43	111	30	2	2474	•k: 349 C**- 1
	Leish	A	0	0	0	7	∞	0	0	∞	m	0	0	0	0	0	0	0	0	15	0	0	14	0	2		0	0	53	irrent wee
	sıngıtıs	В	12	16	23	19	7	8	36	34	11	m	0	19	2	7	26	19	2	96	37	48	m	19	63	86	33	18	647	ided for the cu
1	Mer	A	0		0		0			0	0	0	0	0	0		2	2	0	ß		0	0	0	2	0	0	0	1	data prov
	kenpox	В	22	26	71	41	12	30	57	53	59	33	10	9	9	6	15	43	19	55	19	34	31	45	27	53	88	17	881	orting units
	ŝ	۲	0	0	0	4	0	7	0			0	0	0	0	0		0	0		0		0	0	0		0	0	12	er of repo
	u	В	m	ъ		0	-	0	0	0	0	9	0	0	0	0	0	0	0	7		0	0	0			0	7	23	61 Numb
-	Ë	۷	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	ng units 3
	Hep-	В	2	4		m	m	4	2	~	m	0		0	-	0		m	2	4	2	9	m	41	104	10	m	2	21	of reporti
	VIL	A	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		m			0	~	al number
	snu	В	2	8	ω	43	9	43	28	75	17	464	83	2	2	6	0		0	32	16	26	ω	47	37	23	14		985	2021 Tota
,	I Z Z	۲	0	0	0	2	0	m	0	0	0	12	0	0	0	0	0	0	0		0	0	0	0				0	21	26 th NoV ,
	ospirosis	в	205	324	665	264	86	69	716	260	317	21	56	28	23	33	47	63	ъ	511	28	230	126	316	388	797	542	21	6141	on or before
	Lepto	∢	∞	Μ	35	12		7	14	9	9		0	0	0	0	0	ഹ		4	7	ω	7	ы	19	20	56	0	24	received
	-IO4 DC	В	m	0	Ъ	13	0	0	~	9	0	27	10	0	2	Ч	36	~	2	11		m	6	0	9	S	2	4	160	ers to returns
L	er Foo	A	0	0	0	ы	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	9	iness refe
	PLIC FEV	В	'n		m	ъ	0	ъ	S	2		15	2	4		0	4		0	0	0	H	m	Μ	m	0	0	4	68). T=Timel
L		A	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	id.gov.lk
	epnalit	В		~	2		4	2		2		m	0		2	0	~	0	0	4		2		0	0	∞	11	2	63	lance.ep
ı	Ē	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	s (esurvi
	sentery	В	12	ъ	12	21	13	16	11	16	9	45	26	∞	4	m	39	10	7	20	2	14	∞	12	16	31	4	30	386	Diseases
4	r D	A	1	0	0	0	0	0		0	0	0		0	0	0	4	0		-1	0	0	0	0		0	0	2	9 12	nicable
•	gue reve	Ξ	5327	3021	1371	795	227	23	448	346	518	147	26	37	4	~	3044	47	172	1310	347	209	81	522	141	532	467	300	1953	of Commu
	Den	A	24	21	39	47	~	0	13	σ	11	10		~	m	0	11	2	20	96	16		m	67	m	17	14	4	86	Returns
01100	KUHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapu	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	Source: Weekly

Table 2: Vaccine-Preventable Diseases & AFP

27th–03rd Dec 2021

20 ^{th-} 26 th	Nov 20	021 (48 th	Week)
------------------------------------	--------	-----------------------	-------

Disease		N	lo. of	Case	es by	y Pro	ovinc	Number of cases during current	Number of cases during same	Total number of cases to	Total num- ber of cases to date in	Difference between the number of			
	w	С	S	N	E	NW	NC	U Sab	Sab	week in 2021	week in 2020	2021	2020	in 2021& 2020	
AFP*	03	00	00	00	00	00	00	00	00	03	00	65	38	71.0,%	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Mumps	00	00	00	00	00	00	00	00	00	00	03	65	163	- 60.1 %	
Measles	00	00	00	00	00	00	00	00	00	00	00	13	50	- 74 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	05	07	-28.5 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	04	31	- 87 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	00	09	- 100%	
Tuberculosis	19	04	03	05	04	17	00	07	09	68	142	4680	5752	- 18.6 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis CRS** =Congenital Rubella Syndrome

NA = Not Available

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE