

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health & Indigenous Medical Services 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 47 No. 12

14th - 20th March 2020

Effectiveness of Chloroquine in the management of COVID-19 Part II

Effects of CQ against the SARS-CoV-2

LANKA ZUZ

CQ inhibits the action of SARS-CoV-2 in cell culture by interfering with terminal glycosylation of its cellular receptor, angiotensin-converting enzyme 2 (ACE2) and by inhibiting sialic acid biosynthesis, which is a component of the receptor. These anti-viral effects have been well demonstrated invitro against SARS-CoV-1 and the MERC-CoV to a certain degree. As the genetic sequence of SARS-CoV-2 shares many similarities with SARS-CoV-1, it seems rational to investigate the potential to use CQ in the management of the respiratory disease caused by SARS-CoV-2.

The in-vitro studies showed that CQ did indeed inhibit SARS-CoV-2 activity via the above mechanisms. Further, this inhibition was brought about at low concentrations that can be easily achieved by standard dosing, as the drug has favourable pharmacokinetics and penetrates the tissues readily, including lung tissues.

Based on the findings of these in vitro studies, around 23 clinical trials have been initiated in many Chinese hospitals to assess the safety and efficacy of CQ in the management of COVID-19 pneumonia. The

trials vary in study design, target population, the severity of the disease, the drug dosing and the duration of treatment. The preliminary results have shown improvements in clinical and virology findings, where the patients who were treated with CQ have reported a reduction of exacerbation of pneumonia and duration of symptoms, leading to shortening of the hospital stay, improvement of the lung imaging findings and a reduction in the viral load, over the control group. None of the treated patients had reported any major adverse effects. However, there are no published data on the results of the clinical trials, as these findings were only communicated at a news briefing from the State Council of China.

Due to the rapid spread of the SARS-CoV-2 with 15% of the patients contracting the severe form of the disease, CQ has been recommended in the management of COVID-19 patients in many countries. The recommendations on the dosages and duration of treatment may differ due to unavailability of adequate evidence (table 1).

Table 1: Different dosing regimens rec-ommended for the management ofCOVID-19 using CQ

Contents	Page
1. Leading Article – Effectiveness of Chloroquine in the management of COVID-19 Part II	1
2. Summary of selected notifiable diseases reported $(29^{th} - 06^{th} \text{ March } 2020)$	3
3. Surveillance of vaccine preventable diseases & AFP (29 th - 06 th March 2020)	4

14th- 20th March 2020

Recommending agency	Target population of COVID pa-	Recommended regimen						
	tients							
Department of Science and Tech-	Patients with mild, moderate and	CQ 500 mg twice per day for 10						
nology of Guangdong Province	severe pneumonia.	days						
and Health Commission of Guang-								
dong Province								
Dutch Centre for Disease control	Moderately severe infections	For adults: Chloroquine base: a						
	requiring admission to the hos-	loading dose of 600 mg, 300 mg						
	pital and oxygen therapy	after 12 hours, followed by 300 mg						
		twice daily on days 2–5						
Italian Society of Infectious and	Patients with mild respiratory	CQ 500 mg twice daily or hy-						
Tropical disease	symptoms and co-morbidities to	droxychloroquine200 mg twice						
	patients with severe respiratory	daily for 10 days						
	failure							

However, these agencies emphasize the importance of the availability of safety measures due to the lack of evidence of clinical effectiveness of CQ on COVID-19. The Department of Science and Technology and Health Commission of Guangdong Province recommends that treatment should be coupled with blood testing to rule out the development of haematological abnormalities, serum electrolyte disturbances and/or hepatic and renal dysfunction; routine electrocardiography to rule out the development of QT interval prolongation or bradycardia; Regular assessment of any visual and/or mental disturbances and avoidance of concurrent administration of drugs known to prolong the QT interval, antiarrhythmic, antidepressant and antipsychotic drugs. The Dutch CDC suggests that optimal supportive care should be available when treating patients with CQ.

Thus, it is evident that CQ has shown promising results for the management of COVID-19. However, more robust data are needed on the efficacy, optimal dose and the duration, and the safety profile of Chloroquine, in patients with COVID-19. Until such data are available through clinical trials, this drug should be used cautiously when used in the management of COVID-19.

References

Colson, P., Rolain, J.-M., Lagier, J.-C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. *International Journal of Antimicrobial Agents*, 105932. https://doi.org/https://doi.org/10.1016/ j.ijantimicag.2020.105932

Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S.

(2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. *Journal of Critical Care*. https://doi.org/https://doi.org/10.1016/j.jcrc.2020.03.005

- Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? *International Journal of Antimicrobial Agents*, 105938. https://doi.org/https:// doi.org/10.1016/j.ijantimicag.2020.105938
- Dutch Centre for Disease Control (2020). *Drug treatment options with patients with COVID-19.* Retrieved from <u>https://swab.nl/nl/covid -19</u>
- Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. *BioScience Trends*, *14* (1), 72–73. https://doi.org/10.5582/bst.2020.01047
- Guangdong Provincial Department of Science and Technology and Guangdong Provincial Health and Health Committee Multicenter Collaborative Group of Chloroquine Phosphate for New Coronavirus Pneumonia.Expert Consensus of Chloroquine Phosphate for New Coronavirus Pneumonia [J]. Chinese Journal of Tuberculosis and Respiratory Medicine, 2020,43 (03): 185-188. DOI: 10.3760 / cma.j.issn.1001-0939.2020.03.009
- Rolain, J.-M., Colson, P., & Raoult, D. (2007). Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. *International Journal of Antimicrobial Agents*, 30(4), 297–308. https://doi.org/https:// doi.org/10.1016/j.ijantimicag.2007.05.015
- Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., ... Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Research*, *30*(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0

Compiled By,

Dr. Sashimali Wickramasinghe,

Consultant Epidemiologist, Epidemiology Unit.

WER Sri Lanka - Vol. 47 No. 12

IRCD	C**	58 98	52 96	62 85	64 100	63 98	22 100	59 92	74 98	50 83	36 93	68 100	47 96	57 100	37 79	62 99	65 100	53 89	57 97	68 97	55 91	61 100	62 99		49 98	61 98	79 100	58 93
ani-	Ĥ	0	17	0	25	108	0	2	229	117	0	4	0		ы	H	4	0	152	2	76	83	4	0	37	6	0	376
.eishma isis	В	0	0	0	2	11	0	0	7	0	0	2	0	0	0	0	0	0	24	0	8	4	0	0	н	0	0	29
a	~	14	8	6	14		9	14	8	ъ	ω	m	m	m	0	6	7	Ŀ	~	16	16	8	15	0	31	11	11	227
leningit	В	0	0	0	÷	0						0	0	0	0	0	0	0	0	4	2	0	1	0	0	0	0	13
XC	A	132	187	121	80	31	39	175	91	68	54	4		10	2	49	5	56	212	52	87	56	80	0	103	92	142	78
ickenpe	В	ы	2	O,	2	~	m	Ŀ.	ņ	2	7	0	-	0	0	4	e	2		ß	0	2	Ŀ.	0	6	8	5	3 10
Chi	A	0	0	0	0	1	0	0	0	0	1	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0 2	6 19
łuman Łabies	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s re	٩	7	0		7	2	н		2	9	0	0	0	0	0	0	н	0		0		11	9	0	8	ω	0	48
/iral Iepatiti	В	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	9	0	0	0	0	0	00
	~	0		~	34	2	36	20	13	4	421	15			m	0	0	2	10	б	11	0	14	0	ი	16	7	631
yphus Fever	В	0	0	1		0	m	1		0	18	2	0	0	ц.	0	0	0	0	0	2	0	2	0	0	2	0	34
piro 1	~	57	36	85	15	15	13	158	53	81	10	9	m	30	10	13	21	10	54	15	113	53	94	0	260	65	2	127
Leptos sis	A	4		8		0		7	7		н		0			H	0	0	0	0		4	10	0	18		0	59
5		14	19	1	9	ω	0	12	36	0	16	0	0	0	1	4	0	1	29	1	19	0	ω	0	13	12	Ч	191
ood oisonii	В		ω	0	0	0	0	0	26	0		0	0	0	0		0	0	2	0	0	0	0	0	0	0	0	34
	4	4	4	ω	7		0	7	ч	0	14	m		ω	ω	0	0	0	7	7	2	0	7	0	Ч	Ч	0	56
nteric :ver	8	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
oha Er Fe	A	m	0	4	1	7	0	8	0	m	0	0	0	0	0	2	1	0	4	1	1	0	2	0	11	m	2	48
Encep litis	₽ B	0	0	0	0	0	0		0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0		0	0	4
ery		13	m	S	9	ω	7	10	4	7	34	10	0	4	4	33	8	4	Ŋ	S	8	4	8	0	27	S	25	242
Dysent	AB	4	0	0	0	0	0		0	0	Ŋ	H	0		H	ω	7	0	0	0	0	0	2	0	0	0	7	22
ever		2624	1566	876	1038	410	121	934	253	351	1666	100	116	223	60	1902	271	2079	635	327	295	176	347	0	550	335	789	3044
ngue Fe	Ξ	81	18	32	41	11	4	σ	~	2	34	0	H	6	0	56	15	43	17	13	13	8	6	0	27	12	10	72 18
Del	۲						ŋ											Ð			'n	/a						4
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliy	Galle	Hambantot	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomale	Kurunegala	Puttalam	Anuradhapı	Polonnaruw	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA

•T=Timeliness refers to returns received on or before 13th March , 2020 Total number of reporting units 356 Number of reporting units data provided for the current week: 279 C**-Completeness A = Cases reported during the current week. B = Cumulative cases for the year.

Page 3

14th- 20th March 2020

Table 2: Vaccine-Preventable Diseases & AFP

14th- 20th March 2020

07th - 13th Mar 2020 (11thWeek)

Disease	No. of	Cases b	y Province	•					Number of cases during current	Number of cases during same	Total num- ber of cases to	Total num- ber of cases to date in	Difference between the number of cases to date in		
	W	С	S	Ν	E	NW	NC	U	Sab	week in 2020	week in 2019	2020	2019	2020 & 2019	
AFP*	00	00	00	00	00	00	00	00	00	00	03	09	23	- 60.8 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00 00		00	00	0 %	
Mumps	00	00	00	02	00	01	00	00	01	04	09	49	81	- 39.5 %	
Measles	01	00	00	00	00	00	00	00	00	01	00	19	38	- 50 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	00 00		0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00 00 00		00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	01	03	04	0 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	- 25 %	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	06	07	200 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	03	02	19	- 89.4 %	
Tuberculosis	00	00	00	00	00	00	00	00	00	00	131	1455	1879	- 22.5 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis CRS** =Congenital Rubella Syndrome

Dengue Prevention and Control Health Messages Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them free of water collection.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Sudath Samaraweera CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10