

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health & Indigenous Medical Services 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

SARS, MERS AND Covid 19

Vol. 47 No. 05

25th - 31st January 2020

LANKA

Coronaviruses have become ubiquitous in today's global health discourse, given the magnitude of the outbreak in China, primarily, and the rest of the world. SARS (Severe Acute Respiratory Disease), MERS (Middle east Respiratory Syndrome) and Covid 19 (Coronavirus Disease 19) are all caused by coronaviruses. Until the emergence of SARS-CoV and subsequently of MERS-CoV, these viruses were known to cause only mild respiratory illnesses like the common cold in immunocompetent people.

Source of the virus

Coronaviruses are a family of RNA viruses with differing genotypes and phenotypes. Of the four genera of coronaviruses: alpha, beta, delta, and gamma, alpha and beta coronaviruses are known to cause disease in humans. Sometimes coronaviruses that infect animals can evolve and spillover into humans via an intermediate host. Among the animals that act as hosts to these viruses are birds, rabbits, reptiles, cats, dogs, pigs, monkeys and bats. The coronaviruses that infect humans are known to have a zoonotic origin.

The first reported cases of the novel coronavirus were also linked to the Huanan Wholesale Seafood Market in Wuhan, China. Preliminary studies show that the new virus bears genetic resemblance to a beta coronavirus found in bats.

The intermediate host of SARS-CoV and MERS-CoV is thought to be civet cats and dromedary camels respectively. An intermediate host for the novel coronavirus is yet to be determined.

Routes of transmission

SARS-CoV is transmitted from person to person through respiratory droplets and close contact. Since 2004, cases of SARS infection have not been reported from anywhere in the world.

Sustained human to human transmission of MERS has not been documented. Until now most of the human to human transmission have occurred in health care settings particularly where sick patients are attended to without adhering to proper infection prevention and control practices. Thus far, nearly 80% of human cases have been reported from Saudi Arabia where people have contracted the virus through unprotected contact with infected dromedary camels or infected people. Cases reported in other

Contents	Page
 Leading Article – SARS, MERS AND Covid 19 Summary of selected notifiable diseases reported (18th – 24th January 2020) Surveillance of vaccine preventable diseases & AFP (18th – 24th January 2020) 	1 3 4

countries are usually of persons with a travel history to the Middle East.

The novel coronavirus is transmitted through respiratory droplets and close contact with an infected person.

Epidemiological and related characteristics

WER Sri Lanka - Vol. 47 No. 05

Table 1 outlines some epidemiological characteristics of SARS, MERS and Covid 19.

Table 1: Epidemiological and related characteristics of SARS, MERS and Covid 19

develops. It is also possible to isolate SARS-CoV, MERS-CoV from specimens such as respiratory secretions, blood, urine, and fecal samples. The main mode of diagnosis of Covid 19 is via PCR assays.

25th- 31st January 2020

Preventive and therapeutic interventions

There is no specific vaccine or therapeutic agent recommended for prevention or treatment of coronavirus infections. Vaccines for coronaviruses are currently in development. At present, the treatment is mainly supportive.

Characteristic	SARS	MERS	Covid 19
Source	First reported in China in 2002.	First reported in Saudi Arabia in 2012.	First reported in China in 2019.
R_0^*	2.0 – 3.5	<1	2.2
Cases	8437 (from November 2002 to July 2003)	2494 (end of November 2019)	50580 (laboratory con- firmed as at 15.02.2020)
Deaths	813 (from November 2002 to July 2003)	858 (end of November 2019)	1524 (as at 15.02.2020)
Case fatality rate	~10%	~35%	~3 (based on currently available data)

 average number of secondary infectious cases produced by an infectious case

Clinical features

Common symptoms experienced by patients with SARS-CoV were fever, cough, dyspnea and occasionally watery diarrhoea. MERS has similar clinical features to SARS including severe atypical pneumonia. Yet, there are notable differences such as presence of gastrointestinal symptoms and acute kidney failure as described by Paules et al. The first published analysis of 41 inpatients with Covid 19 by Huang et al reports that common symptoms at onset of illness were fever, cough, myalgia and fatigue. Subsequently, 55% of patients had developed dyspnea and all had developed pneumonia. Chen et al further reports the development of acute respiratory distress syndrome in some of the patients.

Diagnosis of coronavirus infections

During the early stages of coronavirus infections, molecular tests (PCR) are performed to identify the virus. Serological assays can be done later on as the disease

Compiled By

Dr Nimali Widanapathirana

Senior Registrar in Community Medicine

Epidemiology Unit, Ministry of Health

References

- Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... Wei, Y. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *The Lancet*.
 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... Gu, X.
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Gu, X. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The Lancet*.
- Johns Hopkins Center for Health Security. (2020). Coronaviruses: SARS, MERS, and 2019-nCoV
- Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., . . . Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. *New England Journal of Medicine*. doi: 10.1056/NEJMoa2001316
- Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus infections—more than just the common cold. *JAMA*.
- World Health Organization. (2003a). Consensus document on the epidemiology of severe acute respiratory syndrome (SARS): World Health Organization.

World Health Organization. (2003b). Severe Acute Respiratory Syndrome (SARS): Laboratory diagnostic tests. Retrieved 14.2.2020, from https://www.who.int/csr/sars/diagnostictests/ en/

- World Health Organization. (2018). Laboratory Testing for Middle East Respiratory Syndrome Coronavirus.
- World Health Organization. (2019). WHO MERS global summary and assessment of risk, July 2019: World Health Organization.

RDHS Division	Dengu	e Fever	Dysel	ntery	Ence litis	epha F	Enteric Fever		Food Poison	ing	Lepto sis	ospiro	Typhu Fever	s S	/iral lepat	itis	Huma Rabie	<u>د</u> ه	Chicker	xod	Mening	itis	Leishı asis	nani- V	VRCD	
	A	В	A	в	A	B /	A E	~	4	В	A	В	AB	<	_	, m		8	Β		A	~	A	~	*	***
Colombo	439	1388	m	m	m	m	-	2	ω	10	16	22	0	0	0	0	0	0	13	25	2	9	0	0	43	100
Gampaha	238	783	2	ε	0	0	0	0	0	0	Μ	IJ	0	0	0	0	0	0	19	46	-	m	9	6	41	90
Kalutara	98	371	0	0	0	-	0	H	0	-	10	20	7	m	0	0	0	0	6	24	÷	m	0	0	63	85
Kandy	154	552	0		0	0	1	Ŋ	0	0	7	9	7	10		H	0	0	4	16		Ŋ	4	4	54	100
Matale	64	234	0			1	0	0				9	0	0	0				2	4	0	0	9	28	52	100
NuwaraEliya	38	64	m	m	0	0	0	0	0	0	4	ъ	11	14	0	0	0	0	ω	4	0	0	0	0	27	100
Galle	131	546	0	Ŋ	0	7		7	0	4	12	65	m	10	0		0	0	17	67	0	S	0	1	50	98
Hambantota	38	120	0	2	0	0	0			H	Ŋ	33	7	4	0	2	0	0	10	32		2	37	102	58	100
Matara	48	185		m	0		0	0	0	0	16	43		2	2	IJ	0	0	12	29	0		23	20	46	100
Jaffna	254	875	1	9	0	0	0	2	0	0		ω	59	150	0	0	0	0	4	10	0	2	0	0	32	93
Kilinochchi	16	52	0	m	0	0	0	0	0	0	0	0	7	ŋ	0	0	0	0	0	0	0	2	0	1	50	100
Mannar	18	77	0	0	0	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	0	1	0	0	35	100
Vavuniya	31	105	m	m	0	0	-	2	0	0	б	19	0	0	0	0	0	0			÷	2	0	0	9	100
Mullaitivu	11	38	0	m	0	0	1		0	H		~		2	0	0	0	0	Ч	Ч	0	0	0	1	45	83
Batticaloa	228	879	m	10	0	0	0	0	0	Ч	Ч	9	0	0	0	0	0	0	Μ	14	-	9	0	-	48	100
Ampara	47	112	0		0	0	0	0	0	0		10	0	0	0	0	0	0	Ŋ	14	0	S	0	H	43 1	100
Trincomalee	399	1149	0	2	0	0	0	0	0						0	0	0	0	Μ	18		2	0	0	43	92
Kurunegala	170	326		m	0	0	1	2	0	0	ω	15	m	4	-		0	0	17	23	-1	2	12	31	43	66
Puttalam	53	202	Ч	H	0	0	0	0	0	0	2	б	7	Ŋ	0	0	0	0	4	10	ω	8		1	60	100
Anuradhapur	45	132	0	2	0	0	0	0	0	Ч	23	67	0	2	0	0	0	0	9	19	2	ъ	8	30	51	89
Polonnaruwa	21	54	Ч	2	0	0	0	0	0	0	œ	25	0	0	0	0	0	0	6	12	÷	T	12	24	50	100
Badulla	54	188	0	Ч	0	0	0	0	0	m	7	29	0	2	ω	4	0	0	8	26	4	7	0	2	39	100
Monaragala	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	•
Ratnapura	88	251	Μ	6	ч	S	0	0	Н	9	35	105		m	2	2	0	0	13	¥	ъ	12	~	18	39	100
Kegalle	47	152	0	0	0	2	0	Ч	0	0	6	27		-	0	0	0	0	11	22	2	9	0	-	45	100
Kalmune	159	443	Ŋ	11	0	ц.	0	0	0	0	0	H	0	-	0	0	0	0	15	31	ц.	S	0	0	60	100
SRILANKA	2889	9278	27	78	ы	16	9	19	9	30	16	532	91	219	6	17	ч	-	189	512	28	91	11	305	46	94
Source: Weekly R	eturns of (Communical	ole Disc	ases (WR	CD)																					

•T=Timeliness refers to returns received on or before 24th January , 2020 Total number of reporting units 356 Number of reporting units data provided for the current week: 332 C**-Completeness A = Cases reported during the current week. B = Cumulative cases for the year.

25th– 31st January 2020

Table 2: Vaccine-Preventable Diseases & AFP

25th- 31st January 2020

18th - 24th Jan 2020 (04thWeek)

Disease	No. of	Cases b	y Province)						Number of cases during current	Number of cases during same	Total num- ber of cases to	Total num- ber of cases to date in	Difference between the number of
	W	С	S	Ν	E	NW	NC	U	Sab	week in 2020	week in 2019	2020	2019	2020 & 2019
AFP*	00	01	00	00	00	00	00	00	00	01	02	03	08	- 62.5 %
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Mumps	01	00	00	00	00	01	00	00	01	02	10	05	28	- 82.1 %
Measles	00	00	00	00	00	00	01	00	00	01	07	02	17	- 88.2 %
Rubella	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Tetanus	00	00	00	00	00	00	00	00	00	00	00	01	02	- 50 %
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Japanese En- cephalitis	00	00	00	00	00	00	01	00	00	01	01	02	02	0 %
Whooping Cough	00	00	00	00	00	00	00	00	00	00	03	00	08	0 %
Tuberculosis	60	05	17	11	14	18	04	18	21	168	132	485	641	- 24.3 %

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis CRS** =Congenital Rubella Syndrome

NA = Not Available

Number of Malaria Cases Up to End of January 2020, 03 All are Imported!!!

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Sudath Samaraweera CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10