


# WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health, Nutrition \& Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka <br> Tele: + 9411 2695112, Fax: +94 11 2696583, E mail: epidunit@stnet.Ik Epidemiologist: +9411 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.Ik 

Vol. 46 No. 52
21 ${ }^{\text {st_ }}$ 27 $^{\text {th }}$ December 2019
The journey towards the elimination of Measles -why should you be concerned after elimination?

Measles and Rubella, two viral infections with more or less a similar clinical presentation were once considered to be extremely debilitative or sometimes deadlyif not prevented, identified early and treated properly. Effective preventable vaccine, created and initiated against these deadly diseases became the reason for the significant reduction in the reported cases, globally.

World Health Organization has declared Sri Lanka as eliminated measles in 2019 which is a year ahead of the National measles elimination targeted year, of 2020.

Sri Lanka was introduced to this vaccine in the year 1984 for Measles and 1996 for Rubella and since then, it has created a satisfactory awareness among the community, where every child at the age of 9 months and 3 years should encounter a dose of MMR for adequate protection to prevent Measles and Rubella. These strategies of the introduction of Mea-sles-Rubella preventive vaccines lead the path to achieve measles elimination by 2020 (as declared certified measles eliminated in 2019) in par with Regional and Global targets.

Measles is one of the most contagious viral diseases and remains as an important cause of childhood deaths globally, despite the availability of safe and effective vaccine. Measles is caused by Morbillivirus, which was earlier called Rubeola virus. This virus transmits primarily from person-to-person by airborne respiratory droplets that can spread within minutes and can also transmit through direct contact with secretions of infected persons.

Measles mainly affects the respiratory tract and virus can live in mucosal linings of the throat, nose and
lungs, mainly in secretions of the infected persons. Being, extremely aggressive, the infection can easily spread from one infected person to another unimmune person by droplets through coughing, sneezing or contact with secretions of an infected person. The aggressiveness or the high contagiousness will explain as it can easily spread to 16-18 unimmune (susceptible) persons from 1 infected person. Measles can spread even before an infected person shows any signs and symptoms of the disease. It starts spreading 4 days before initial signs of the disease (fever and rash) to 4 days after developing the disease.

After the initial exposure, a person might take 10-14 days to develop the first most signs of infection including a fever which usually begins slowly but increases gradually to high fever spikes followed by cough, runny nose (coryza), conjunctivitis and unfitness to the body (malaise). A characteristic reddish skin rash appears 2-4 days after onset of fever and other symptoms or after the "prodromal period". The rash which is called "maculopapular rash" starts at the patient's face, neck and then spreads to the rest of the body, finally reaching hands and feet as well. There is an exact diagnostic spots appear in the mouth which is called " Koplik spots" described as tiny blue-white spots, appearing about 2 days before or after the skin rash. Other associated symptoms of the condition would be loss of appetite, enlargement of lymph nodes and diarrhoea (commoner when young children are affected especially below 1 year).

Measles can often lead to severe and fatal complications such as middle ear infection (otitis media), croup (laryngotracheobronchitis), diarrhoea and pneumonia. As a measles complication, encephalitis can occur, which could lead to serious consequences. But, the most dangerous complications that can develop after

| Contents | Page |  |
| :--- | :--- | :--- |
| 1. | Leading Article - The journey towards the elimination of Measles -why should you be concerned after elimination? | 1 |
| 2. | Summary of selected notifiable diseases reported $\left(14^{\text {th }}-20^{\text {th }}\right.$ December 2019 $)$ | 3 |
| 3. | Surveillance of vaccine preventable diseases \& $\mathrm{AFP}\left(14^{\text {th }}-20^{\text {th }}\right.$ December 2019) | 4 |

measles disease is post-infectious measles encephalitis conditions which are inflammation of the brain tissue that can occur in about 1-4 per 1000-2000 cases. The hidden complication of encephalitis situation can emerge even after several years which is called "sub-acute sclerosing panencephalitis (SSPE)" (occurs about 1 per 10 000-100 000 cases) resulting disabled children and high mortality due to SSPE.

The risk of developing severe or fatal measles disease is increased for children aged $<5$ years, and persons living in overcrowded conditions, those who are malnourished especially with vitamin A deficiency, and those with immunological disorders, such as AIDS. Since Vitamin A deficiency has identified to be a risk factor for complications of Measles, vitamin A supplementation is recommended to children above 6 months of age up to 5 years. This is a requirement especially for children who are having measles, malnourished, suspected to have a weak immune system or who are diagnosed with vitamin A deficiency. However, in the Child health programme in Sri Lanka expect to get the maximum benefit from Vitamin A supplementation programme for child health, provide vitamin A from 6 months through 5 years. Furthermore, antibiotics can be used to treat secondary bacterial respiratory tract infections and complications such as pneumonia which can occur during an episode of measles.

Being a clinical diagnosis supported by laboratory confirmation, Measles should be promptly treated before allowing it to worsen and give rise to the aforementioned complications. Supportive therapy, adequate bed rest and hydration play the hallmark of Measles treatment while safe and effective vaccine provides assuring protection.

After the development and popularization of Measles vaccine, the incidence of the infection has drastically reduced and as a result, global strategies are developed to eliminate measles by 2020, aiming to reduce under 5 -year morbidity and mortality.

The WHO recommended definition of suspected measles that is a case with fever and maculopapular (non-vesicular) rash, or a case where a health-care worker suspects measles is considered as a notifiable disease in Sri Lanka to identify the disease burden in the country and to take preventive measures. Essential Laboratory testing is considered for definitive diagnosis in formulating and way forward for sustaining post-elimination as other conditions such as infections with rubella virus, parvovirus B19 (erythema infectiosum or Fifth disease), human herpes viruses 6 and 7 (roseola infantum), dengue virus, and Streptococcus pyogenes (scarlet fever) may mimic measles. Laboratory confirmation by detecting anti-measles virus $\operatorname{lgM}$ antibodies in blood samples collected between $3^{\text {rd }}$ to $30^{\text {th }}$ days of the onset of rash and detection of measles virus in the throat and nasal swabs are necessary for sustaining the achieved measles elimination status.

These essential suspected case notification based on more sensitive case definition of "fever and maculopapular rash" and essential laboratory testing will help the country to detect if any imported cases early and prevention of outbreaks in the country. High population-level immunity in preventing the community transmission will be achieved through essential childhood vaccination for measles at 9 months and

3 years based on the National Immunization schedule in the country.

| Year | Vaccine | Target age group |
| :---: | :---: | :---: |
| 1984 | Measles | 9 months |
| 2001 | MR | All children aged 3 years as a $2^{\text {nd }}$ Measles dose |
| 2003 Catchup campaign | M | 10-15 years (to make the population immune to measles) |
| 2004 Catchup campaign | MR | 16-20 years (to make the population immune to measles) |
| 2011 | MMR (replacing Measles at 9 months and MR at 3 years and the first dose advanced to 1 year of age) |  |
| 2015 | MMR-1 advanced to 1 year age in 2011 and re-scheduled to 9 months in 2015; <br> MMR-2 at 3 years of age |  |

In the current National Immunization schedule, the MMR vaccine is given to all children at the age of 9 months as the first dose of the vaccine and the second dose is given at the age of 3 years. It is really necessary to get 2 doses of MMR as to provide protection for Measles. Since the first dose of the MMR vaccine is given below 1 year of age, expecting to protect them before 1 year as they are vulnerable to Measles and Rubella before 1 year, follow up with $2^{\text {nd }}$ dose of MMR is necessary as the dose given before 1 year may not provide adequate protection for the child. By receiving 2 doses it would provide lifelong immunity and protection from Measles for the rest of the life.

Further, it is very important to inform the possible Measles or Rubella cases (Fever and rash cases-suspected of measles or rubella) to Public Health Inspector, Public Health Midwife or the Medical Officer of Health in the area without delay for further prevention of the spread in sustaining the achieved measles elimination status in the country.

## Dr Deepa Gamage

Consultant Epidemiologist

| RDHS Division | Dengu | Fever | Dyse | ntery | Enc itis | ephal | Enteri | $c$ Fever | Food Poiso | ning | Lepto | spirosis | Typh Fev |  |  |  | Hum Rabie |  | Chick | enpox | Meni | gitis |  | mania- | WRCD |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | T* | C** |
| Colombo | 661 | 19567 | 0 | 60 | 1 | 14 | 1 | 25 | 0 | 72 | 14 | 294 | 1 | 14 | 0 | 11 | 0 | 0 | 13 | 461 | 1 | 54 | 0 | 6 | 50 | 100 |
| Gampaha | 371 | 15400 | 1 | 49 | 1 | 10 | 0 | 5 | 0 | 32 | 3 | 153 | 0 | 5 | 1 | 11 | 0 | 2 | 5 | 452 | 0 | 29 | 0 | 168 | 48 | 98 |
| Kalutara | 166 | 7925 | 0 | 74 | 0 | 7 | 0 | 23 | 0 | 69 | 5 | 644 | 0 | 8 | 0 | 6 | 0 | 2 | 13 | 693 | 0 | 108 | 0 | 3 | 63 | 98 |
| Kandy | 288 | 8468 | 3 | 103 | 0 | 13 | 1 | 10 | 1 | 32 | 4 | 108 | 2 | 96 | 0 | 6 | 0 | 3 | 10 | 296 | 0 | 68 | 1 | 57 | 65 | 100 |
| Matale | 159 | 2216 | 0 | 31 | 0 | 4 | 0 | 1 | 0 | 6 | 1 | 55 | 0 | 7 | 0 | 9 | 0 | 2 | 1 | 92 | 0 | 6 | 1 | 279 | 59 | 100 |
| NuwaraEliya | 13 | 400 | 0 | 103 | 0 | 2 | 0 | 10 | 0 | 11 | 1 | 66 | 2 | 83 | 0 | 9 | 0 | 0 | 7 | 160 | 0 | 63 | 0 | 1 | 26 | 100 |
| Galle | 160 | 7003 | 1 | 60 | 0 | 8 | 0 | 3 | 0 | 7 | 17 | 530 | 3 | 66 | 0 | 51 | 1 | 3 | 14 | 475 | 1 | 56 | 0 | 5 | 61 | 99 |
| Hambantota | 29 | 1962 | 1 | 40 | 0 | 5 | 0 | 4 | 0 | 12 | 13 | 252 | 0 | 134 | 0 | 5 | 0 | 1 | 2 | 318 | 0 | 46 | 7 | 801 | 73 | 100 |
| Matara | 88 | 3956 | 1 | 42 | 0 | 4 | 0 | 8 | 0 | 20 | 12 | 532 | 0 | 44 | 0 | 24 | 0 | 1 | 2 | 330 | 0 | 17 | 11 | 615 | 59 | 100 |
| Jaffna | 543 | 7458 | 4 | 404 | 1 | 16 | 0 | 42 | 0 | 117 | 2 | 42 | 24 | 542 | 0 | 6 | 0 | 1 | 2 | 277 | 3 | 26 | 0 | 0 | 21 | 93 |
| Kilinochchi | 27 | 344 | 0 | 115 | 0 | 4 | 0 | 16 | 0 | 13 | 0 | 22 | 0 | 36 | 0 | 1 | 0 | 0 | 0 | 19 | 0 | 8 | 0 | 15 | 53 | 100 |
| Mannar | 28 | 229 | 0 | 6 | 0 | 2 | 1 | 15 | 0 | 1 | 1 | 2 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 10 | 0 | 1 | 56 | 100 |
| Vavuniya | 57 | 780 | 1 | 39 | 0 | 13 | 0 | 30 | 0 | 23 | 0 | 58 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 86 | 0 | 12 | 0 | 4 | 61 | 100 |
| Mullaitivu | 11 | 243 | 0 | 23 | 0 | 1 | 0 | 16 | 0 | 5 | 0 | 28 | 1 | 9 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 7 | 0 | 7 | 30 | 100 |
| Batticaloa | 196 | 2341 | 10 | 260 | 1 | 3 | 0 | 14 | 0 | 43 | 0 | 54 | 0 | 1 | 1 | 10 | 0 | 1 | 4 | 278 | 0 | 32 | 0 | 0 | 51 | 100 |
| Ampara | 18 | 355 | 2 | 84 | 0 | 4 | 0 | 0 | 0 | 19 | 4 | 62 | 0 | 2 | 0 | 12 | 0 | 0 | 5 | 322 | 0 | 25 | 1 | 5 | 59 | 100 |
| Trincomalee | 286 | 2381 | 0 | 52 | 0 | 1 | 0 | 0 | 0 | 63 | 1 | 27 | 1 | 21 | 0 | 5 | 0 | 1 | 4 | 250 | 0 | 13 | 0 | 5 | 34 | 98 |
| Kurunegala | 118 | 2962 | 0 | 78 | 0 | 23 | 0 | 6 | 0 | 31 | 6 | 327 | 0 | 30 | 0 | 24 | 0 | 4 | 9 | 628 | 0 | 105 | 12 | 828 | 61 | 96 |
| Puttalam | 98 | 2082 | 0 | 36 | 0 | 5 | 0 | 1 | 0 | 19 | 2 | 58 | 2 | 19 | 0 | 3 | 0 | 0 | 2 | 136 | 0 | 52 | 1 | 11 | 62 | 100 |
| Anuradhapura | 39 | 1069 | 3 | 72 | 0 | 13 | 1 | 7 | 0 | 13 | 13 | 209 | 1 | 47 | 0 | 25 | 0 | 2 | 12 | 523 | 1 | 99 | 6 | 548 | 44 | 91 |
| Polonnaruwa | 19 | 518 | 0 | 32 | 0 | 3 | 0 | 3 | 0 | 6 | 7 | 104 | 0 | 4 | 0 | 17 | 0 | 2 | 11 | 320 | 1 | 27 | 2 | 315 | 60 | 100 |
| Badulla | 107 | 1784 | 2 | 95 | 0 | 12 | 0 | 10 | 0 | 89 | 8 | 243 | 1 | 132 | 0 | 25 | 0 | 0 | 5 | 348 | 0 | 170 | 1 | 19 | 62 | 100 |
| Monaragala | 0 | 333 | 0 | 36 | 0 | 4 | 0 | 0 | 0 | 79 | 0 | 189 | 0 | 82 | 0 | 41 | 0 | 0 | 0 | 212 | 0 | 112 | 0 | 22 | 60 | 61 |
| Ratnapura | 111 | 3926 | 1 | 124 | 2 | 42 | 0 | 10 | 0 | 33 | 36 | 1180 | 0 | 48 | 12 | 51 | 0 | 4 | 9 | 436 | 2 | 167 | 4 | 181 | 49 | 100 |
| Kegalle | 65 | 2593 | 0 | 39 | 0 | 19 | 0 | 2 | 0 | 28 | 15 | 329 | 1 | 63 | 1 | 99 | 0 | 0 | 12 | 503 | 1 | 59 | 3 | 68 | 70 | 100 |
| Kalmune | 132 | 1302 | 2 | 117 | 0 | 2 | 0 | 1 | 0 | 64 | 1 | 35 | 0 | 3 | 0 | 4 | 0 | 0 | 11 | 271 | 1 | 29 | 0 | 0 | 63 | 100 |
| SRILANKA | 3790 | 97597 | 32 | 2174 | 6 | 234 | 4 | 262 | 1 | 907 | 16 | 5603 | 39 | 1512 | 15 | 455 | 1 | 29 | 153 | 7905 | 13 | 1400 | 50 | 3964 | 55 | 97 |

## WER Sri Lanka - Vol. 46 No. 52

Table 2: Vaccine-Preventable Diseases \& AFP
$14^{\text {th }} \mathbf{- 2 0}{ }^{\text {th }}$ Dec 2019 ( $51^{\text {st }}$ Week)

| Disease | No. of Cases by Province |  |  |  |  |  |  |  |  | Number of cases during current week in 2019 | Number of cases during same week in 2018 | Total number of cases to date in 2019 | Total number of cases to date in 2018 | Difference between the number of cases to date in 2019 \& 2018 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | C | S | N | E | NW | NC | U | Sab |  |  |  |  |  |
| AFP* | 01 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 01 | 00 | 79 | 63 | 25.3 \% |
| Diphtheria | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 0 \% |
| Mumps | 00 | 02 | 01 | 00 | 00 | 00 | 00 | 01 | 03 | 06 | 09 | 320 | 360 | -11.1\% |
| Measles | 04 | 02 | 00 | 00 | 00 | 00 | 01 | 00 | 00 | 07 | 04 | 290 | 128 | 126.5 \% |
| Rubella | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 03 | 00 | 08 | 0 \% |
| CRS** | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 0 \% |
| Tetanus | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 01 | 20 | 20 | 0 \% |
| Neonatal Tetanus | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 0 \% |
| Japanese Encephalitis | 01 | 01 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 02 | 01 | 19 | 26 | - 26.9 \% |
| Whooping Cough | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 02 | 39 | 54 | - 27.7 \% |
| Tuberculosis | 20 | 26 | 10 | 00 | 02 | 16 | 14 | 01 | 01 | 90 | 225 | 8189 | 8690 | 5.7 \% |

## Key to Table 1 \& 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.
RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,
KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.
Data Sources:
Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis ), Japanese Encephalitis
CRS** $=$ Congenital Rubella Syndrome

## Number of Malaria Cases Up to End of December 2019, 09 <br> All are Imported!!!

## PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sItnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

