

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 46 No. 07

09th - 15th February 2019

Paediatric Tuberculosis: Are we detecting enough?

Tuberculosis (TB) is an infectious disease caused by the bacillus- Mycobacterium tuberculosis (MTB). Tuberculosis commonly affects the lungs (pulmonary TB) but can affect any other organ in the body (Extrapulmonary TB). It is an airborne infection. When a patient with infectious pulmonary tuberculosis coughs, sneezes or laughs, bacilli are expelled into the air in the form of tiny droplets. When a healthy person inhales these droplets containing tubercle bacilli, he/she may become infected. The risk of infection depends on the extent of the exposure, infectiousness and susceptibility of the person for infection.

The children do get the infection in the same way as adults and household contact is the commonest source of infection for young children. The source of infection for older children can be close contact outside the household.

Poverty, overcrowding and poor living conditions are contributing to the increased transmission of TB.

TB affects people of all ages. But some people are more vulnerable to get TB. Young children are among them. Other vulnerable groups include old people, malnourished, people living with HIV, persons with weekend immune systems, persons suffering from chronic diseases like diabetes, alcoholics, drug addicts and institutionalised people.

Due to the immaturity of the immune system, children are at higher risk of progressing to active disease than adults and developing complicated forms such as TB meningitis and miliary TB. This risk is much higher among infants and very young children. Most of the children develop active disease within the first year of acquiring the infection. As it reflects recent infection, paediatric disease burden in a country can be taken as an indicator of current transmission

status within the community.

According to the recent estimates, there were 10 million peoples with active TB around the globe in 2017. Out of this, I million (10%) were children below 15 years of age. Both girls and boys were almost equally affected. There were an estimated 1.3 million deaths among HIV negative TB patients in 2017. Out of the total deaths, 15% were among children with TB. HIV has a great impact on the survival of children with TB. Children accounted for 10% of the total deaths among HIV-TB co-infected patients. In countries with a high burden, children account for around 25 % -40 % of the new cases and in low burden countries, it is around 4% - 7 %. But the actual caseload may be much higher than this.

Sri Lanka is considered as a middle burden country for Tuberculosis. There are around 8500 to 9500 cases of TB detected each year. Out of this, childhood TB cases ranged from 250 to 350 which were around 3% of the total case burden of the country. In 2017, 250 child TB cases were reported to the central unit of NPTCCD out of which 101 patients were below 5 years of age and 149 cases belong to the 5-15 age group. There was an almost similar number of girls and boys in the below 5 years age group. But female TB patients were more in the age group of 5-15 years in 2017. There is a district variation of childhood TB cases. It varies from 0% - 5% in 2017. Not a single case of TB below 15 years was detected in Polonnaruwa & Kilinochchi Districts. The detection of child TB cases was very low in districts such as Colombo (3.5%), Gampaha (1.5%), Kalutara (2.3%), Ratnapura (2.5%) and Galle (0.7%) even though overall TB burden is high. Only Kandy and Matale districts had shown adequate detection of paediatric cases with over 5% case burden.

When considering the site of TB, the majori-

RI LANKA

Contents	Page
1. Leading Article – Paediatric Tuberculosis: Are we detecting enough?	1
2. Summary of selected notifiable diseases reported (02nd - 08th February 2019)	3
3. Surveillance of vaccine preventable diseases & AFP (02 nd – 08 th February 2019)	4

ty of cases were with extrapulmonary TB (EPTB). The commonest form of EPTB among children was TB lymphadenitis.

Among pulmonary TB cases, the majority were clinically diagnosed cases of TB. Severe forms of TB such as TB meningitis among children were very low.

There are several reasons for the low detection of paediatrics cases.

- Diagnosis of TB among children is often difficult. Children may be presented with nonspecific symptoms or most of the times asymptomatic, in the case of primary TB infection. TB can mimic common childhood diseases too.
- Confirmation of diagnosis microscopically will be an issue due to difficulty in obtaining samples from younger children.
- Inadequacy in contact tracing. This may happen due to deficiencies in service provision or due to patient factors. People are reluctant to come or bring children for screening when they are healthy or due to social reasons and economic difficulties.
- Lack of awareness among health workers, that TB may cause important morbidly among children.
- Inadequacy of using field level public health workers for identification of TB symptomatic in the community.

In addition underreporting may be an issue in Paediatric TB.

Early detection of paediatric TB cases and treatment is very important in reducing mortality and complications of TB among children. It will further control the transmission of infection in the community.

All the health workers including medical specialists and medical officers should be made aware of the Global trends, country situation, diagnosis and management of child TB patients. Field level public health staff should be educated on the identification of children having symptoms suggestive of TB in clinics and in the field. Attempts should be made to establish a definite diagnosis. This should be supported by a sensitive diagnostic algorithm inclusive of detailed history with exposure status and symptoms, clinical examination including growth assessment, Laboratory investigations including tuberculin skin test, X-ray, Xpert MTB/RIF etc., for detection of TB among children.

Contact tracing should be strengthened in order to improve paediatric TB case detection. The close contacts of all tuberculosis patients should be identified and screened. All the child contacts below 5 years irrespective of the symptoms and children above 5 years with symptoms should be evaluated for TB using appropriate investigations.

All the close child contacts below 5 years of bacteriologi-

cally positive pulmonary tuberculosis patients should be given Isoniazid preventive therapy for 6 months after excluding active TB.

The risk of developing active TB is more during the first two years following exposure. Therefore, it is essential that all the close contacts of TB patients should be followed up for a two year period in six months intervals by the field PHI.

Children with active TB should be treated with appropriate treatment regimens.

BCG (Bacille Calmette-Guérin) vaccine should be given to all newborns at birth or before discharge from the hospital. It is a live attenuated vaccine made from Mycobacterium bovis. It protects young children against developing complications of Primary infection, such as TB meningitis and miliary TB. The BCG vaccination coverage is over 98% in Sri Lanka and it has impacted on the very low number of the disseminated forms of TB in the country.

The improved coordination with pedestrians, physicians and maternal and child care services will contribute to the timely detection of child TB cases and proper management.

In addition, community awareness in general is very much important in improving health-seeking behaviour, and to reduce stigma. Special health education programmes need to be carried out in schools if a school going child is found with TB in the focus of identifying possible contacts and to avoid stigmatization.

References

Global Tuberculosis Report – 2018 WHO, Geneva National guidelines for management of Tuberculosis in children, 2018, NPTCCD

Newton SM, Brent AJ, Anderson S, Whittaker E, and Kampmann B, Paediatric Tuberculosis Lancet Infectious Diseases. 2008 August; 8(8): 498–510.

Compiled by

Dr. Nirupa Pallewatte MD (Minsk), MSc, MD. (Colombo) Consultant Epidemiologist

Table 1: Selected notifiable diseases reported by Medical Officers of Health

02nd - 08th Feb 2019 (6th Week)

	* 5	100	86	83	100	97	100	96	100	100	93	100	93	92	28	100	100	79	86	100	97	94	100	100	100	100	100	97
WRCD	<u>*</u>	47	22	63	28	28	17	63	71	63	23	42	20	20	57	22	20	30	26	28	40	9	09	65	43	28	22	53
Leishmania- sis	8	П	16	m	m	54	0	1	114	76	0	4	0	1	Н	0	0	0	117	1	71	35	2	7	13	4	0	522
Leishr sis	_	П	7	0	П	က	0	0	20	10	0	0	0	0	0	0	0	0	25	0	14	6	0	П	0	П	0	87
	_	6	m	18	5	2	8	12	5	2	4	П	0	1	Н	2	П	0	8	1	13	5	28	20	29	m	П	182
Meningitis	A	0		m	0	0	0	4	П	0	П	-	0	0	0		0	0		1	4	1	7	4	7	1	0	38
		61	22	130	56	14	6	23	99	44	27	Н	0	11	0	20	59	12	101	25	63	44	34	33	09	62	53	1000
Chickenpox	В	9	8	12	7	0	7	∞	18	2	72	0	0	0	0	7	9	9	21	7	12	4	10	4	6	6	9	167 1
	<	0	0	0	Н	—	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	3
Human Rabies	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		7	0	0	П	7	П	1	П	3	0	Н	0	0	0	0	4	0	6	0	4	7	4	9	С	1	0	45
Viral Hepatitis	a	0	0	0	П	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	m	П	0	0	9
> I	<	9	П	П	13	0	11	13	30	14	151	8	2	3	7	0	0	П	9	4	10	П	15	20	2	4	0	321
Typhus Fever	A B	П	П	0	7	0	2	П	2	0	13	Н	0	0	0	0	0	1	П	0	7	0	С	П	е	0	0	40
		19	9	9/	17	17	∞	32	8	16	15	10	0	11	7	7	6	0	32	7	46	13	38	45	68	22	10	255
Leptospirosis	В	П	m	7	П	2	2	m	1	4	4	0	0	7	0	0	0	0	m	1	12	7	9	2	16	m	7	08
	<	П	11	25	7	0	0	0	0	1	1	0	0	7	0	0	0	0	7	0	0	0	24	0	7	15	0	116 8
Food Poisoning	ω	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	51	0	0	1	0	22
	∢	7	0	-1	0	0	0	1	0	1	7	4	7	7	П	7	0	0	7	0	0	0	7	0	7	0	0	8
Enteric Fever	ω	0	0	0	0	0	0	0	0	0	0	0	3	0	0	2	0	0		0	0	0	0	0	1	0	0	7
	⋖	П	П	က	0	0	0	7	0	c	2	Н	0	1	0	0	0	0	2	0	2	П	П	П	6	2	0	41
Encephaliti s	ω	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	2	0	m
	<	7	-	10	7	7	7	7	m	-	21	4	0	П	7	22	8	0	10	9	m	2	8	10	17	4	12	173
Dysentery	В	1	0	7	7	0	0	1	0	0	72	0	0	0	0	7	7	0	7	0	0	0	7	7	7	0	1	24 173 3
	<	1658	066	435	412	93	35	204	189	302	1182	46	38	61	15	268	36	157	288	111	06	47	115	83	270	197	151	7473
Dengue Fever	æ			31	,	14	1	35	50	53		23	7	12	0	41	2	21	37	70	16	2	17	10	45	14	70	7/ 6
Deng	∢	201	118	m	Ŋ	П		e.	2	2	129			П		4		2	m	2			П	П	4	П	2	899
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA 899 7473

Source: Weekly Returns of Communicable Diseases (WRCD).

• T=Timeliness refers to returns received on or before 08th February , 2019 Total number of reporting units 353 Number of reporting units data provided for the current week: 335 G**-Completeness A = Cases reported during the current week. B = Cumulative cases for the year.

Table 2: Vaccine-Preventable Diseases & AFP

02nd - 08th Feb 2019 (6th Week)

Disease	No. of	Cases b	y Province	e					Number of cases during current	Number of cases during same	Total num- ber of cases to	Total number of cases to date in	Difference between the number of cases to date in		
	W	С	S	N	Е	NW	NC	U	Sab	week in 2019	week in 2018	date in 2019	2018	2019 & 2018	
AFP*	00	00	00	00	01	00	01	00	00	02	02	13	06	116.6 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	01	00	03	02	01	00	01	08	09	42	28	50 %	
Measles	00	01	00	01	01	00	00	00	00	03	02	27	13	107.6 %	
Rubella	00	00	00	00	00	00	00	00	00	00	01	00	03	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	02	04	-50 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Encephalitis	00	00	00	00	00	00	00	00	00	00	02	02	09	- 77.7 %	
Whooping Cough	00	00	00	00	00	00	00	01	00	01	01	10	07	42.8 %	
Tuberculosis	51	11	11	17	06	13	29	02	35	177	271	1039	911	14 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Dengue Prevention and Control Health Messages

Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them free of water collection.

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. S.A.R. Dissanayake CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10