

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 45 No. 37

08th - 14th September 2018

Measles Elimination Strategic Plan Part V

4. Indicators of the quality of field and laboratory surveillance

High-quality epidemiological and laboratory data are required to allow a meaningful assessment of progress towards elimination. The routine surveillance system should provide sufficient and timely data based on performance indicators.

These include

- Timeliness of reporting of measles cases to the national level: (target: >80%)
- The reporting rate of discarded non-Measles non-rubella cases: target: >2 cases per 100 000 population per year)
- Proportion of suspected cases with adequate specimens for detecting acute Measles infection collected and tested in a proficient laboratory (target: >80%)
- Proportion of laboratory-confirmed chains of transmission with samples adequate for detecting Measles virus collected and tested in an accredited laboratory (target: >80%)
- Proportion of all suspected Measles cases that have had an adequate investigation initiated within 48 hours of notifica-

tion (target: aim for 80%) -,

- Proportion of specimens received at the laboratory within 5 days of collection (target: ≥80%)
- Proportion of results reported by the laboratory within 4 days of specimen receipt (target: ≥80%)
- 5. Lines of evidence to be considered when determining whether elimination has been achieved

When determining whether a country or the region as a whole has achieved elimination, the regional verification commission should consider 5 lines of evidence.

These lines of evidence include the 3 essential criteria for determining elimination (see above) as well as other supporting information that allow a comprehensive evidence-based assessment of past programme performance and future capacity to sustain elimination.

- A detailed description of the epidemiology of Measles since the introduction of Measles vaccine in the national immunization programme
- Population immunity presented as a birth cohort analysis with the addition of evidence related to any marginalized and

(Contents	Page
1	Leading Article – Measles Elimination Strategic Plan Part V	1
9	2. Summary of selected notifiable diseases reported (01st_07th September 2018)	3
9	3. Surveillance of vaccine preventable diseases & AFP (01st_ 07th September 2018)	4

migrant groups

To assess coverage, countries should review and analyze data from administrative reports for routine delivery and supplementary immunization activities, as well as coverage surveys where available. This information will allow the estimation of population immunity (= vaccination coverage x vaccine effectiveness) against Measles and rubella. Countries may want to include other sources of immunity data such as well-conducted seroprevalence studies.

- Quality of epidemiological and laboratory surveillance systems for Measles
- Sustainability of the national immunization programme including resources for mass campaigns, where appropriate, in order to sustain elimination

Components that *may* be used to assess the sustainability of the programme include:

- a. a current national plan for the elimination of Measles
- b. secured funding for vaccine procurement (e.g. a line item in the national budget for vaccine procurement and programme implementation);
- c. evidence of vaccine demand forecasting and vaccine stock management; and
- d. standard operating procedures at each level of the programme (e.g. a checklist for conducting an immunization session).
- 5. Genotyping evidence that Measles virus transmission is interrupted

Molecular epidemiological data are used to verify that elimination has been achieved by documenting the interruption of transmission of endemic viruses. Prior to elimination, the genetic information obtained provides a baseline of the circulating strains including predominantly endemic strains and some imported strains. After elimination has been achieved, the molecular epidemiological information from the new cases can be compared with the pre-elimination endemic viral strains. The absence of previously endemic strains for >12 months with or without sporadic imported strains is consistent with elimination.

The individual lines of evidence should not be considered

alone but should be evaluated together to establish the case for elimination. The process of correlating and integrating the evidence from various sources of information will allow countries to determine whether the available data are valid, complete, representative and consistent.

The work of the regional verification commission is to correlate and integrate the information from each line of evidence and make an overall determination as to whether elimination has been achieved and maintained.

Compiled By;
Dr. Saman Pathirana,
Senior Registrar in community Medicine,
Epidemiology Unit

Sources

http://www.who.int/wer Measles vaccines: WHO position paper – April 2017

Ministry of Health Circular: EPI/151/1/2017 On 17/02/2017 Epidemiology Unit, Ministry of Healthcare and Nutrition, Measles Fact Sheets

Global Measles and Rubella Strategic Plan 2012-2020 https://www.who.int/wer/en/ WHO Weekly Epidemiological Report 2013

Table 1: Selected notifiable diseases reported by Medical Officers of Health 01st - 07th Sept 2018(36th Week)

- WRCD	*: *-	. 63	9 100	53 100	60 100	, 61 100	28 100	23 100	, 72 100	. 55 100	37 93	. 51 100	38 100	3 59 100	24 100	001 99 (65 100	3 28 100	63 100	63 100	44 95	. 58 88	, 47 100	67 100	47 100	65 100	51 100	53 99
Leishmania- sis	ď		35	6) 22	8 87	0	9	557	321	3	1	3	8) 2	0) 2	18	3 262) 2	324	177	7	34	171	11	1	2064
Leis	⋖	42 0	35 1	77 0	29 0	11 3	27 0	46 0	8 32	12 12	0 6	2 0	0	2	1 0	17 0	21 0	0 6	73 8	63 0	32 16	16 11	87 0	102 0	91 4	40 1	10 0	869 88
Meningitis	œ		н	4	0	0	0	1	2	П	0	0	0	0	0	0	П	0	0	2	н	0	0	6 1	0	3	0	30
	∢	514	546	475	257	32	183	243	506	219	217	53	27	38	7	128	216	163	396	107	321	196	365	136	227	278	152	E 878
Chickenpox	œ		10	21 4	4	0	ω	7	12 2	5	ω	0	0	0	п	5	4	4	13	1	9	3	12	4	2	15 2	9	23 62
ē	⋖		0	0	0	0	0	1	1	0	7	1	0	П	П	က	П	0	2 1	0		П	0	0	7	0 1	0	17 16
Human Rabies	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
	~	4	12	11	16	9	21	2	7	12	П	0	0	0	0	7	9	П	18	7	6	4	30	25	20	11	П	2.50
Viral Hepatitis	4	0	Н	0	0	0	0	0	0	0	0	0	0	0	0	0		0	П	0	0	0	0	4	7	0	0	(
ω ,	α.	11	4	9	81	2	112	43	57	38	253	16	0	7	5	1	0	22	20	11	17	0	64	111	22	58	1	
Typhus Fever	4	0	0	0	П	0	7	0	m	П	0	1	0	0	0	0	0	П	0	0	0	0	т	9	0	1	0	(
Leptospirosis	ď	149	170	422	28	72	35	301	72	182	10	4	П	31	8	39	33	47	111	34	107	93	128	228	520	192	9	1
Leptos	4	9	7	8	0	0	Ŋ	7	m	7	0	П	0	0	0	0	0	7	m	7	П	0	7	4	30	13	П	,
guir	α.	29	16	53	16	31	47	6	4	22	213	2	2	12	11	24	5	13	m	4	38	16	13	2	5	79	31	1
Food Poisoning	⋖	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	4	П	0	0	1	0	1
Enteric Fever	ď	34	18	11	3	4	10	4	2	9	37	16	3	37	10	4	2	4	13	4	m	0	7	1	21	9	2	
	۵	: "	П	1	0	0	П	0	0	1	0	0	0	2	П	0	0	0	0	0	0	0	0	0	1	0	0	(
Encephaliti s	œ	7	8	4	5	1	Э	10	4	9	4	1	0	4	0	2	М	2	13	9	7	2	7	2	36	8	c	1
Enc	⋖		2 0	2 0	0 0	9	8	0 6	3 0	2 0	8	0 4	0 2	2 0	0 9	0 6	2 0	0 9	3 0	0	3 0	0 2	5 1	9 0	0	8 1	1 0	•
Dysentery	ď		55	. 65	06	16	48	39	13	32	118	24	17	15		129	. 52	36	103	34	43	27	95	28	138	48	31	1
Dys	⋖		3	3 1	.2	0	7	0	1	1	2	. 1	0	0	3 1	9 ,	m	0	9 2	4 2	3	0	5 2	1 2	7	3 1	0	,
Dengue Fever	ď	7291	4043	2403	2763	763	161	770	700	830	2305	251	186	469	88	4227	195	916	1919	1384	719	249	415	714	1788	1128	1524	600
Dengue	⋖	102	100	37	96	6	7	11	8	%	21	11	0	4	7	25	7	10	31	12	15	∞	∞	10	20	22	6	, ; ;
RDHS Division		Colombo	paha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	CDTIANIVA

Source: Weekly Returns of Communicable Diseases (WRCD).

-T=Timeliness refers to returns received on or before 07th September , 2018 Total number of reporting units 353 Number of reporting units data provided for the current week. 351 C**-Completeness A = Cases reported during the current week. B = Cumulative cases for the year.

Page 3

Table 2: Vaccine-Preventable Diseases & AFP

01st - 07th Sept 2018(36th Week)

Disease	No. of	Cases b	y Province	Э					Number of cases during current	Number of cases during same	Total number of cases to date in	Total number of cases to date in	Difference between the number of cases to date in		
	W	С	S	N	Е	NW	NC	U	Sab	week in 2018	week in 2017	2018	2017	2018 & 2017	
AFP*	00	00	00	00	00	00	00	00	00	00	01 43 48		48	- 10.4 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Mumps	00	00	02	02	00	00	00	00	00	04	02	247	227	8.8 %	
Measles	01	00	01	00	00	00	00	00	00	02	01	89	170	- 47.6 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	04	06	- 33.3 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	01	0%	
Tetanus	00	00	00	00	01	00	00	00	00	01	01	16	12	33.3 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Encephalitis	00	00	00	00	00	00	01	00	00	01	00	24	21	14.2 %	
Whooping Cough	01	00	00	00	00	00	00	00	00	01	01	37	13	184.6 %	
Tuberculosis	70	16	08	19	07	11	00	11	17	159	157	5927	5804	2.1 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Dengue Prevention and Control Health Messages

Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them free of water collection.

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. S.A.R. Dissanayake CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10