

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 44 No. 25

17th- 23th June 2017

Towards Eliminating Viral Hepatitis (Part III)

This is the third in a series of three articles on eliminating viral hepatitis.

Essential interventions for elimination of viral hepatitis

Eliminating viral hepatitis as a major public health threat needs strenuous action with an essential package of interventions and services.

1. Vaccination

Effective vaccines exist for preventing viral hepatitis A, B and E infections. Hepatitis B virus (HBV) immunization is a critical intervention for elimination of HBV epidemics. Wider provision of the existing, safe and effective HBV vaccine, including through universal childhood vaccination and by delivery of birthdose, will drastically reduce new HBV infections, reducing rates of chronic illness and death.

Immunization programmes should make efforts to target HBV vaccination for those people at increased risk. Depending on the country context, hepatitis A virus vaccination may also be considered as an appropriate intervention in response to outbreaks in specific communities.

2. Improving blood safety

The risk of transmission of viral hepatitis B and C (as well as HIV and other blood-borne infections) through transfusion of contaminated blood and blood products is extremely high, and, despite being preventable, still occurs due to the absence, or poor quality, of screening in blood transfusion services.

Ensuring the availability of safe blood and blood products is a vital public health strategy towards eliminating viral hepatitis.

Reducing unnecessary injections remains a vital challenge, along with staff training in safe injections practices, and effective sharps and waste management

3. Preventing mother-to-child transmission

Transmission of HBV in highly endemic areas occurs from infected mothers to their infants during the perinatal period. Elimination of mother-to-child transmission of HBV will require a comprehensive approach that includes prevention of HBV infection in young women, HBV testing, care of pregnant women with chronic HBV infection, delivery of HBV vaccine to the infant within 24 hours of birth, safe delivery practices, strengthened maternal and child health services. Birth-dose vaccination is a key intervention for prevention of HBV infection in infants.

4. Providing harm reduction services

A package of harm reduction services for people who inject drugs can be highly effective in preventing transmission of viral hepatitis A, B and C as well as HIV and other blood-borne infections. These harm reduction services should include a comprehensive package of interventions that will have a great impact on hepatitis epidemics: sterile needle and syringe programmes, opioid substitution therapy for opioid users, risk reduction communication, HBV vaccination, and treatment of chronic hepatitis infec-

	Contents	Page
1.	Leading Article – Towards eliminating viral hepatitis (Part III)	1
2.	Summary of selected notifiable diseases reported - (10th - 16th June 2017)	3
3.	Surveillance of vaccine preventable diseases & AFP - $(10^{\circ} - 16^{\circ})$ June 2017)	4

tion. This hepatitis strategy calls for a major increase in provision of sterile needles and syringes to people who inject drugs. Ensuring sufficient coverage of other harm reduction interventions depends on overcoming legal and societal barriers.

5. Promoting safer sex

Specific attention should be given to certain populations, particularly men who have sex with men and heterosexual persons with multiple sexual partners. Safer sex practices, including minimizing the number of sexual partners and consistently and correctly using male and female condoms, offer powerful protection against hepatitis B and C and HIV infection, and a range of other sexually transmitted infections.

6. Ensuring access to safe food and water

Assuring access to safe food, drinking water and sanitation systems can dramatically reduce the transmission of viral hepatitis A and E. Specifically, actions should include a focus on hygiene as a priority in all settings through alignment with efforts to address Goal 6 of the 2030 agenda for Sustainable Development, which includes the following 2030 targets:

- achieve universal and equitable access to safe and affordable drinking water for all
- □ achieve access to adequate and equitable sanitation and hygiene for all and end open defecation.
- support and strengthen the participation of local communities in improving water and sanitation management.

The relative composition and balance of the interventions will vary by country, based on the country context and epidemic dynamics, including the prevalence of various types of viral hepatitis.

Resources :

- 1. Global health sector strategy on viral hepatitis 2016–2021, WHO, 2016
- 2. Manual for the development and assessment of national viral hepatitis plans, WHO, 2015

Table 1: Water Quality Surveillance
Number of microbiological water samples May 2017

Number of microbiological water samples May 2017											
District	MOH areas	No: Expected *	No: Received								
Colombo	15	90	77								
Gampaha	15	90	NR								
Kalutara	12	72	NR								
Kalutara NIHS	2	12	1								
Kandy	23	138	NR								
Matale	13	78	NR								
Nuwara Eliya	13	78	73								
Galle	20	120	63								
Matara	17	102	20								
Hambantota	12	72	26								
Jaffna	12	72	119								
Kilinochchi	4	24	31								
Manner	5	30	NR								
Vavuniya	4	24	39								
Mullatvu	5	30	NR								
Batticaloa	14	84	67								
Ampara	7	42	33								
Trincomalee	11	66	4								
Kurunegala	29	174	55								
Puttalam	13	78	87								
Anuradhapura	19	114	NR								
Polonnaruwa	7	42	0								
Badulla	16	96	132								
Moneragala	11	66	87								
Rathnapura	18	108	NR								
Kegalle	11	66	NR								
Kalmunai	13	78	80								

^{*} No of samples expected (6 / MOH area / Month)
NR = Return not received

Compiled by

Dr. K.A. Tharanga Navodani

Acting Consultant Community Physician

{MBBS, MSc, MD (Community Medicine)}

Epidemiology Unit,

Ministry of Health. Sri Lanka

Table 1: Selected notifiable diseases reported by Medical Officers of Health 10th - 16th June 2017 (24th Week)

ble 1:	Se	lect	ed I	noti	fiab	ie a	isea	ses	s re	port	ea	by I	/led	ıcal	Off	icer	'S 01	f He	aitn	10	Jtn -	16	^{tn} Jl	ıne	20	1/	(24	th W e
WRCD	*	81	33	4	83	82	100	92	95	94	100	72	100	75	29	93	71	69	83	64	23	86	92	91	20	73	72	75
WR	±L	69	27	43	74	69	100	22	29	94	100	20	80	20	20	71	71	46	72	64	37	22	65	73	22	45	38	62
nania-	В	1	4	0	7	33	0	0	177	89	0	4	0	6	3	1	3	1	82	3	141	73	12	10	13	2	0	620
Leishmania- sis	A	0	0	0	0	0	0	0	7	9	0	0	0	0	1	0	0	0	2	0	0	2	0	0	0	0	0	13
jitis	В	17	18	73	22	34	28	33	13	2	26	7	0	1	5	20	24	17	26	22	33	6	87	29	110	44	6	712
Meningitis	Α	1	0		П	2	7	1	0	0	7	0	0	0	0	0	4	1	0	1	2	0	2	3	0	0	0	53
xodi	В	193	161	308	149	30	201	201	122	122	161	2	12	18	6	112	116	87	341	96	233	136	192	57	200	150	108	3517
Chickenpox	A	6	0	9	7	1	36	4	т	9	т	0	0	0	0	2	2	7	7	1	2	2	3	3	0	7	0	101
	В	0	П	0	П	0	0	1	П	1	0	0	0	0	1	1	0	0	1	0	0	0	1	1	0	0	0	10
Human Rabies	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Viral Hepatitis	В	6	7	7	6	2	11	0	9	m	4	7	0	н	1	4	4	17	14	1	6	4	36	14	47	11	↔	222
He	A	1	0	0	0	0	н	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	3	0	0	œ
Typhus Fever	В	1	6	4	81	7	106	22	29	16	353	11	7	9	4	0	1	6	21	10	12	3	28	20	20	46	0	968
ĻΨ	A	0	0	0	1	0	7	0	0	2	7	0	0	0	0	0	0	0	0	0	0	0	4	1	2	2	0	16
Leptospirosis	В	48	59	136	56	70	70	114	23	78	22	က	0	21	8	14	8	12	39	7	39	56	48	99	290	28	2	1130
Lepto	A	1	0	4	7	0	0	6	7	17	0	0	0	0	0	П	0	0	0	0	1	0	3	8	4	П	0	23
Food Poisoning	В	21	8	35	6	9	6	11	15	2	42	1	0	2	1	11	0	3	12	0	8	0	1	6	4	14	284	208
Fo Poisc	A	0	0	0		0	0	0	0	0	7	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	ъ
Fever	В	18	14	7	4	1	15	9	7	1	21	2	1	18	3	13	1	3	0	2	1	2	9	0	4	4	7	162
Enteric Fever	A	0	0	0	0	0	н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Encephalitis	В	2	12	m	4	1	9	2	2	9	6	0	0	0	1	œ	2	2	2	2	1	2	9	3	09	8	4	160
Ence	٧	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	7
Dysentery	В	38	15	27	52	6	18	23	15	19	129	6	5	10	9	09	11	11	38	23	20	10	48	33	98	24	27	992
Dyse	A	0	0	П	7	0	0	1	0	1	æ	0	0	0	0	0	0	0	3	0	0	0	2	2	0	0	П	21
Fever	В	15771	12150	4165	3192	885	258	2877	1703	2337	2934	252	464	470	157	3886	358	4340	4417	1898	1206	1672	641	1035	836	4025	3036	74965
Dengue Fever	A	1032	871	219	426	78	18	103	73	151	23	2	7	16	9	82	14	19	290	175	09	27	33	82	85	336	445	4722
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapu	Polonnaruw	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA

Source: Weekly Returns of Communicable Diseases (WRCD).

•T=Timeliness refers to returns received on or before 16th June, 2017 Total number of reporting units 337 Number of reporting units data provided for the current week: 262C**-Completeness A = Cases reported during the current week. B = Cumulative cases for the year.

Table 2: Vaccine-Preventable Diseases & AFP

10th - 16th June 2017 (24thWeek)

Disease			I	No. of Ca	ses by I	Province	e			Number of cases during current	Number of cases during same	Total number of cases to	Total num- ber of cases to date in	Difference between the number of cases to date in 2017 & 2016	
	w	С	S	N	Е	NW	NC	U	Sab	week in 2017	week in 2016	date in 2017	2016		
AFP*	00	00	01	00	00	00	00	00	00	01 (37	27	37.03%	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Mumps	01	02	00	01	00	02	01	00	01	08	01	162	196	- 17.34%	
Measles	00	00	00	01	00	00	01	02	00	04	01	174	271	- 35.79%	
Rubella	00	00	00	00	00	00	00	00	00	00	00	06	06	0%	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	09	03	200%	
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	21	00	0%	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	08	30	- 73.3%	
Tuberculosis	45	09	09	00	03	09	01	02	00	78	88	3730	4474	- 16.6%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

Influenza Surveillance in Sentinel Hospitals - ILI & SARI													
		Human		Animal									
Month	No Total	No Positive	Infl A	Infl B	Pooled samples	Serum Samples	Positives						
June	302	48	40	8	999	1335	0						

Source: Medical Research Institute & Veterinary Research Institute

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. P. PALIHAWADANA CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10