

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk

Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk

Yellow Fever Outbreak in Africa

Web: http://www.epid.gov.lk

Vol. 43 No. 35

20th – 26th August 2016

The current yellow fever outbreak in Africa was first detected in Luanda, Angola in December 2015.

Yellow fever

Yellow fever, which is a viral heamorrhagic disease is transmitted by infected mosquitoes of Aedes and Haemogogus species. Yellow fever virus is an Arbo virus of the genus Flaviviridae. Monkeys are the primary reservoir of yellow fever.

Depending on the breeding pattern of the vector, three types of transmission cycles can be identified. In sylvatic or jungle yellow fever, the disease transmits between monkeys via mosquitoes that breed in the wild. In intermediate yellow fever, mosquitoes that breed both in the wild as well as around households, spread the disease among both monkeys and humans. This is the most common type of transmission cycle seen in outbreaks which occur in Africa. In urban yellow fever, the disease transmission occurs in heavily populated areas with high mosquito density.

Incubation period of yellow fever is 3 to 6 days. There can be several clinical outcomes. Some infected people remain asymptomatic. Some can develop symptomatic illness consisting of fever, muscle pain, prominent backache, headache, loss of appetite, nausea and vomiting which resolves after 3 to 4 days. However, the remaining portion of infected people can go into a toxic phase after the initial symptomatic phase. In the toxic phase, along with high fever, abdominal pain and vomiting occur. Several other systemsLiver and Kidney also get involved and patients develop jaundice, dark urine and bleeding manifestations. Nearly half of the patients who enter the toxic phase die after 7 to 10 days.

No specific antiviral drug is available to treat yellow fever. However, supportive care which includes prevention and treatment of dehydration, controlling fever, prevention and treatment of liver and kidney failure and prevention and treatment of secondary bacterial infections improve the outcome. The two main preventive measures for yellow fever are preventing mosquito bites and vaccination.

Burden

A number of countries, 34 in Africa and 13 in central and south America are either endemic for yellow fever or have regions which are endemic for yellow fever. During 2013, 84, 000 to 170,000 severe yellow fever cases and 29,000 to 60,000 deaths were reported.

Outbreak in Africa

The current yellow fever outbreak has two main sources– Angola and Uganda. Disease occurrence in these countries are independent from each other. However, China, Democratic Republic of Congo (DRC) and Kenya have reported imported cases from Angola. Apart from that, Brazil, Colombia, Peru and four other African countries have also reported cases.

Although yellow fever is endemic in Angola, this is the first outbreak which has occurred after 28 years. This outbreak is urban in nature and

Contents	Page
1. Leading Article – Yellow Fever Outbreak in Africa	1
2. Summary of selected notifiable diseases reported $-(13^{th}-19^{th} August 2016)$	3
3. Surveillance of vaccine preventable diseases & AFP -(13^{th} - 19^{th} August 2016)	4

WER Sri Lanka - Vol. 43 No. 35

shows extensive local transmission. In fact, the DRC got affected through local transmission of the infection from Angola. In the initial stage where the cases started to report in DRC, most of the cases were from an area which shares borders with Angola.

Uganda started to report cases from January 2016. By April, there were 30 suspected cases with high fever and haemorrhagic signs. Mean age of the affected individuals was 23 and majority were males. However, none of them had travelled outside the country thus reflecting the independent origin of the outbreak in Uganda.

Although this outbreak is not a public health emergency of international concern, it remains a serious public health event.

Current situation

As of 11th August 2016, Angola has reported 3922 suspected cases of yellow fever with 369 deaths in the current outbreak. Case Fatality Rate (CFR) among suspected cases is 9.4%. From the above suspected cases, 879 were laboratory confirmed as yellow fever. Out of them, 119 died with a CFR of 13.5%. However, no new cases were reported from Angola since 23rd June.

DRC has reported 2357 suspected cases where 73 were confirmed as yellow fever. Out of the confirmed cases 16 died with a CFR of 21.9%.

Response

Surveillance and risk assessment is a major component of the response to yellow fever outbreaks. New cases and new areas of involvement can be effectively identified through surveillance. Rapid transmission of this data to decision makers allow implementation of strategies to contain the outbreak.

Vaccination, which is the most important measure to prevent yellow fever is an essential component of the response. Yellow fever vaccine is relatively safe where adverse events are rare. After 30 days of vaccination, it produces effective immunity in 99% of vaccine recipients. Immunity is life long. Therefore it is important to increase vaccine production and increase release of the vaccine. Fractional doses of the vaccine is also given as an outbreak control measure in settings where vaccine supply is poor.

Mass vaccination is essential in outbreak control and vaccination of travellers is important where the risk of international spread of the disease is high. Strict border control measures are also adopted to reduce international spread.

20th– 26th August 2016

Apart from this, effective clinical management of cases is important to contain the outbreak. Vector surveillance, reducing mosquito breeding sites and prevention of mosquito bites are also essential to reduce disease transmission.

Proper risk communication based on scientific evidence which goes in line with the local context is an integral part of this response. This will allow more community involvement and address of misconceptions.

Sources

World Health Organization official web site

Table 1: Water Quality Surveillance

Compiled by Dr. S.A.I.K. Sudasinghe of the Epidemiology Unit

District	MOH areas	No: Expected *	No: Received
Colombo	15	90	75
Gampaha	15	90	NR
Kalutara	12	72	NR
Kalutara NIHS	2	12	NR
Kandy	23	138	NR
Matale	13	78	NR
Nuwara Eliya	13	78	NR
Galle	20	120	84
Matara	17	102	0
Hambantota	12	72	NR
Jaffna	12	72	120
Kilinochchi	4	24	43
Manner	5	30	NR
Vavuniya	4	24	21
Mullatvu	5	30	26
Batticaloa	14	84	0
Ampara	7	42	0
Trincomalee	11	66	20
Kurunegala	29	174	98
Puttalam	13	78	NR
Anuradhapura	19	114	53
Polonnaruwa	7	42	20
Badulla	16	96	161
Moneragala	11	66	73
Rathnapura	18	108	39
Kegalle	11	66	NR
Kalmunai	13	78	NR

Leishmani- asis	В	0	7	0	8	17	0	с	234	152	-	0	0	9	5	-	ъ	5	63	ę	170	98	ę	33	-
Leish asis	۶	0	0	0	0	0	0	0	ω	З	0	0	0	0	-	0	0	0	0	0	-	2	0	0	0
gitis	в	40	33	59	32	48	32	32	14	19	45	10	-	8	7	11	4	11	44	38	32	14	148	18	111
Meningitis	٩	2	0	-	0	0	0	-	0	0	4	0	0	0	-	-	0	-	. 	с	0	0	с	0	-
xodu	в	326	279	195	138	27	100	224	173	133	137	10	7	23	15	78	111	126	237	64	180	87	163	52	156
Chickenpox	۶	5	-	0	4	0	9	10	വ	4	5	0	0	0	0	с	2	-	6		0	-	2	0	2
an SS	В	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	2	-	0	0	0	2	0
Human Rabies	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Viral Hepatitis	в	28	31	21	42	14	31	7	55	27	œ	0	0	9	2	10	6	32	19	2	15	2	66	113	114
Hep <	۷	-	-	-	0	0	0	0	7	2	0	0	0	0	0	0	-	0	0	0	0	0	2	с	6
Typhus Fever	в	7	12	7	70	18	58	LT L	50	40	577	24	38	10	9	5	0	23	32	60	24	-	80	98	28
<u>́</u> , <u>т</u>	۲	0	0	0	4	-	-	-	2	2	3	0	0	0	0	0	0	0	-	-	0	0	2	ς	2
Leptospirosis	В	180	236	334	93	70	43	204	87	138	12	13	6	12	23	38	25	28	122	35	238	83	106	154	408
Lept	A	4	2	4	0	0	2	0	-	2	2	0	0	0	0	-	0	2	0	-	с	0	-	0	4
Food Poisoning	В	30	26	26	33	4	29	8	54	35	51	5	œ	31	39	61	21	24	13	0	26	13	24	10	23
Poi	∢	с	0	-	4	0	14	0	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0	0
Enteric Fever	В	44	20	27	15	1	48	9	ς	9	66	34	20	76	17	36	0	11	-	9	2	10	ω	ς	24
Enteri	٩	0	0	0	-	0	4	0	0	0	2	0	0	-	0	5	0	0	0	-	0	0	0	0	0
Encephaliti s	В	8	11	8	15	-	2	8		13	4	0	4	3	2	0		2	11	4	з	4	13	-	28
Enc	۲	-	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0	-
Dysentery	В	119	102	76	124	46	71	112	44	91	194	31	21	11	23	224	37	49	241	63	61	27	94	46	278
Dy	۲	2	2	-	4	0	2	3	-	0	7	0	ς	0	0	2	0	0	m	-	0	0	0	0	2
Dengue Fever	В	11952	4737	2611	2968	679	326	1503	594	879	1659	99	106	195	148	413	192	335	1932	851	518	354	582	297	2226
Dengu	A	289	109	63	80	14	10	34	7	23	34	2	0	5	4	7		5	28	ω	12	2	12	4	26
																					-				

NuwaraEliya

Kandy Matale

RDHS Division

Gampaha

Kalutara

Colombo

Hambantota

Galle

Matara

Jaffna

Kilinochchi

Mannar

WER Sri Lanka - Vol. 43 No. 35

ڻ*

⊬

WRCD

Table 1: Selected notifiable diseases reported by Medical Officers of Health

20th– 26th August 2016

13th - 19th Aug 2016 (34th Week)

0 7

0 0

0 5

0 4

3 3

0 0

- -

0 0

3 18

0 0

5 2

Kegalle

Monaragala

Badulla

Ratnapura

Anuradhapura Polonnaruwa

Puttalam

Trincomalee Kurunegala

Ampara

Batticaloa

Vavuniya Mullaitivu 2 0 2

15 0 1

വ

SRILANKA

Kalmune

0 0

-T=Timeliness refers to returns received on or before 19th August, 2016 Total number of reporting units 339 Number of reporting units data provided for the current week: 311 C**-Completeness A = Cases reported during the current week. B = Cumulative cases for the year. Source: Weekly Returns of Communicable Diseases (WRCD).

Page 3

WER Sri Lanka - Vol. 43 No. 35

Table 2: Vaccine-Preventable Diseases & AFP

20th– 26th August 2016

13th - 19th Aug 2016 (34th Week)

Disease				No. of Ca	ses by f	Province	9		Number of cases during current	Number of cases during same	number of cases to	Total num- ber of cases to date in	Difference between the number of		
	W	С	S	N	E	NW	NC	U	Sab	week in 2016	week in 2015	date in 2016	2015	cases to date in 2016 & 2015	
AFP*	00	00	01	00	00	00	00	01	01	03	01	49	49	0%	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Mumps	00	01	01	02	00	01	00	00	01	06	04	275	255	+7.8%	
Measles	00	00	00	00	00	00	00	00	00	00	64	312	1927	-83.8%	
Rubella	00	00	00	00	00	00	00	00	00	00	00	07	07	0%	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Tetanus	00	00	00	00	00	00	00	00	00	00	01	07	14	-50%	
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Japanese En- cephalitis	01	00	00	00	00	00	00	00	00	01	00	13	07	-85.7%	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	01	46	59	-22.0%	
Tuberculosis	90	29	18	01	10	20	07	00	27	202	121	6263	6550	-4.3%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Influenza Surveillance in Sentinel Hospitals - ILI & SARI													
Manth			Human	Animal									
Month	No Received	ILI	SARI	Infl A	Infl B	Pooled samples	Serum Samples	Positives					
July	9745	36	13	0	11	686	446	0					

Source: Medical Research Institute & Veterinary Research Institute

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. **Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication**

ON STATE SERVICE