

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka

Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk

Web: http://www.epid.gov.lk

Vol. 43 No. 32

30th – 05th August 2016

Stunting in children

Defining stunting

Stunting is a result of combination of factors which includes childhood malnutrition, chronic illnesses and infections and psychological deprivation. Stunting or being short for age is defined as a height that is more than two standard deviations below the World Health Organization (WHO) child growth standard median. As the definition itself indicates, stunting can be detected by the simple method of measuring height and plotting it in a standard growth chart. Height is recommended to be measured every six months in children below five years of age in routine child health clinics. This facilitates early detection and proper referral of stunted children, at a primary care level.

Burden

Even though the prevalence of stunting is decreased over the past two decades, it still affects a significant portion of children worldwide. Yet it goes undiagnosed most of the time. Globally, stunting affects 162 million children under five years and the cases are largely concentrated in South Asia and Sub Saharan Africa. Number of stunted children in India accounts for 33% of stunted children worldwide. It is estimated that, if the current trend continues, 127 million children will be stunted by year 2025. As for the outcome of stunting, it is responsible for nearly half of childhood deaths. Even if they survive, there can be at least 10% decrease in future outcome over the lifetime of a stunted individual.

Causes and risk factors

A variety of causes produce stunting. Mainly childhood malnutrition, chronic illnesses and infections and psychological deprivation contribute to this. Apart from this, children who are not malnourished or not affected by infections or not psychologically deprived can also appear short due to other causes. This include familial short stature, constitutional delay of growth and puberty, endocrine causes and chromosomal disorders.

Childhood malnutrition causes stunting as well as wasting. Childhood malnutrition can be traced back to maternal malnutrition. Poor diet of the mother, teenage pregnancies and poor spacing between pregnancies can lead to maternal under nutrition. During the intra uterine life, the foetus solely depends on the mother for nutrition. Therefore, maternal under nutrition can lead to Intra Uterine Growth Restriction (IUGR). In fact 20% of childhood stunting is due to IUGR produced by maternal undernutrition. A research done to find Factors associated with underweight and stunting among children in rural Terai of Eastern Nepal has demonstrated that low maternal BMI is a risk factor for stunting.

Not only nutrition during intrauterine life, but also inadequate childhood and young child feeding result in stunting. Inadequate breast feeding, non exclusive breast feeding, poor weaning and inadequate complimentary feeding which is limited in quality, quantity and variety contribute to this.

Contents	Page
 Leading Article – Stunting in children Summary of selected notifiable diseases reported -(23rd – 29th July 2016) Surveillance of vaccine preventable diseases & AFP -(23rd – 29th July 2016) 	1 3 4

Infections is another leading cause for stunting as well as wasting. With increasing severity, increasing duration and increasing number of recurrences, the possibility of developing stunting is more. There is bidirectional association between infections and malnutrition. Infections as well as chronic illnesses increase Basal Metabolic Rate (BMR) and reduce energy available for growth. Due to infections there can be reduced food intake and reduced gut absorption of nutrients which lead to malnutrition. Malnutrition on the other hand reduces immunity and increases infections. Thus, this vicious cycle produces long term effects like stunting. Chronic illnesses such as chronic kidney disease, Coeliac disease, congenital heart disease, bronchiectasis, crohns disease etc can also lead to stunting.

Apart from this, good nurturing and stimulation are essential for adequate growth of a child. Therefore, psychological deprivation can produce stunting. A research done in Pakistan has demonstrated poor household income and overcrowded living conditions as risk factors for stunting.

Effects of stunting

Stunting has many adverse consequences to the affected children. Not only individually, it is also a constraint to economic development as a country. Effects of stunting can be both long term and short term.

Stunting affects health of the individual and increases both morbidity and mortality. Stunting also reduces cognitive, motor and language development of the affected children. Specially, stunting before 2 years is a well established risk factor for poor cognitive development. Increasing number of children with stunting also increases health sector expenditure on them as these children are more likely to get hospitalized than normal children. Stunted children may also require specialized treatments which are expensive. This in turn increases the burden on the economy of the country.

Stunting poses long term adverse consequences as well. At individual level, stunted children who gain weight rapidly after 2 years of age are at increased risk of being obese and overweight in later adult life. Risk of developing coronary heart disease, stroke, type 2 diabetes mellitus and hypertension are also high in these children. Reproductive health can also be affected in stunted children. As stunting affects cognitive and intellectual development, school performances of stunted children can be sub optimal, thus preventing them from achieving their true potential. This negative impact on individual learning capacity and health ultimately leads to reduction of work ca-

pacity and productivity. This in turn affects the economic progress of the country. Research evidence suggest that stunting can reduce gross domestic productivity of a country by up to 3%. According to the World Bank estimates, a 1% loss in adult height due to childhood stunting is associated with a 1.4% loss in economic productivity. It is also estimated that stunted children earn 20% less as adults than non stunted individuals.

Reducing stunting

Stunting is multifactorial. Therefore, it is important to carry out efforts to reduce stunting through different approaches.

The critical 1000-day window period from a woman's pregnancy to her child's second birth day is considered as the most important time period for optimal growth of the child. Maternal nutrition during this period plays a major role. In fact, interventions should be carried out from the adolescent age onwards to achieve a satisfactory level of maternal nutrition. Regular micronutrient supplementation including Iron and folate and prevention and treatment of infections during pregnancy is of critical importance.

Ensuring exclusive breast feeding by increasing awareness, assessing breast feeding technique and provision with support are needed to maintain adequate nutrition in early childhood. However, changing from breast milk to complimentary feeding after 6 months should also be encouraged. It is important to make sure that complimentary feeding is comprised of high quality, nutrient rich foods. Food fortification and supplementation are important to improve micronutrient intake.

Strengthening community based interventions to improve water, sanitation, hygiene and food safety are important to prevent infections.

Sources

WHA Global Nutrition Targets 2025: Stunting Policy Brief available at http://www.who.int/nutrition/topics globaltar-gets stunting policybrief.pdf

UNICEF official web site

Childhood Stunting: Context, Causes and Consequences available at http://www.who.int/nutrition/ events/2013 ChildhoodStunting colloquium 14Oct Conceptu alFramework colour.pdf

Compiled by Dr. S.A.I.K. Sudasinghe of the Epidemiology Unit

Table 1	l: S	Sele	cte	d no	otifia	able	dis	eas	es r	ерс	orte	d by	y Me	edic	al (Offic	ers	of	Hea	lth	,	23 rd	- 29	9th J	uly	201	6 (3	31 th	Week)
WRCD	*5	94	09	71	96	92	82	96	92	100	100	100	100	75	80	100	71	83	67	85	84	98	94	100	89	91	100	06	
WR	*_	63	27	50	87	62	82	85	67	100	100	75	80	25	09	79	14	67	79	69	63	71	76	100	72	64	77	72	
nani-	В	0	4	0	ω	17	0	က	216	139	1	0	0	9	4	—	Ω	2	28	2	153	88	က	33	1	_	0	748	
Leishmani- asis	4	0	0	0	0	0	0	0	—	7	0	0	0	0	0	0	0	_	0	0	0	4	0	0	0	0	0	ω	
gitis	В	36	30	53	31	47	30	29	7	18	36	6	_	∞	9	6	2	10	42	28	30	14	132	18	103	34	18	785	
Meningitis	٨	0	0	2	0	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	—	0	3	0	0	0	_	6	suess
xod	В	274	229	180	120	25	06	204	158	123	123	10	7	23	15	11	96	120	207	54	162	78	136	51	135	213	57	2961	omplete
Chickenpox	⋖	1	0	0	ĸ	2	m	2	-	е	8	0	0	0	_	2	0	_	4	0	2	2	2	2	8	2	0	45	ں۔ *20
	В	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	_	7	0	0	0	0	7	0	0	4	10	week: 31
Human Rabies	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	e current
Viral Hepatitis	В	24	24	19	40	14	28	7	35	22	8	0	0	9	—	6	7	32	19	0	15	2	88	108	86	16	3	625	ided for th
A Hek	Α	0		0	-	0	0	—	10	က	0	0	0	0	0	0	0	0	0	0	0	0	2	-	2	0	0	24	data prov
Typhus Fever	В	7	10	9	63	17	23	69	45	35	564	23	38	6	2	2	0	21	25	26	24	-	75	88	24	22	0	1285	ting units
Ty	⋖	0	0	0	-	0	က	Ŋ	က	2	2	0	0	0	0	0	0	0	က	0	0	0	7	_	0	0	0	37	ır of repor
Leptospirosis	В	145	183	309	93	19	36	194	82	132	10	12	∞	12	23	35	23	25	115	33	228	81	94	152	389	137	13	2631	39 Numbe
Leptos	⋖	2	0	е	_	_	-	_	-	6	1	0	0	0	0	—	0	2	-	0	2	0	4	_	10	_	_	43	ng units 3;
-ood isoning	В	27	18	23	29	က	15	7	54	35	46	2	2	30	36	89	20	24	13	0	26	12	22	10	23	47	42	661	of reportir
Food Poisonir	⋖	0	0	_	0	0	0	7	-	0	0	0	0	0	0	—	0	0	0	0	0	0	0	0	0	0	0	2	ıl number
-ever	В	41	18	22	13	1	40	9	7	9	09	32	18	64	17	28	0	10	—	4	2	6	7	2	23	23	2	467	2016 Tota
Enteric Fever	A	0	1	0	0	0	0	_	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	ω	29th July,
	В	2	6	7	15	- -	-	ω	-	13	3	0	4	က	2	0	_	2	ω	4	က	3	12	-	26	17	3	152	or before 3 year.
Encephaliti S	۷	_	0	0	—	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	5	CD). ceived on ses for the
ntery	В	105	80	69	114	42	99	86	41	68	166	30	16	10	22	209	32	45	223	26	55	23	84	41	258	62	26	2095	Communicable Diseases (WRCD)T=Timeliness refers to returns received on or before 29th July, 2016 Total number of reporting units 339 Number of reporting units data provided for the current week: 310 C**-Completeness current week. B = Cumulative cases for the year.
Dysentery	A	-	_	2	2	0	2	7	-	4	6	0	0	-	0	7	0	2	7	2	0	က	-	—	9	0	2	61 2	le Disea refers to r B = Cum
ever	В	10125	3357	2297	2556	564	279	1308	561	764	1530	58	105	184	137	382	165	319	1734	168	418	322	523	249	2021	946	388	32060	imunicab imeliness ant week.
Dengue Fever							20 2																					1266 32	IS of Com -T=Ti
	۷	332	52	57	204	27		77	20	49	61	-	0		7	12	4	00	66	35	ra 11	a 14	27	16	108	21	3		ly Returr rted during
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	Source: Weekly Returns of Communicable Diseases (WRCD). 'T=Timeliness refers to returns received on or bef A = Cases reported during the current week. B = Cumulative cases for the year
		O	O	~	~	2	2	O		2			2	_	2	ш	4		~	<u> </u>	H	ш.	ш	2	<u> </u>	~	~	P	age 3

Table 2: Vaccine-Preventable Diseases & AFP

23rd - 29th July 2016 (31th Week)

Disease			l	No. of Ca	ses by F	Province	9		Number of cases during current	Number of cases during same	Total number of cases to	Total num- ber of cases to date in	Difference between the number of cases to date		
	W	С	S	N	Е	NW	NC	U	Sab	week in 2016	week in 2015	date in 2016	2015	in 2016 & 2015	
AFP*	00	00	02	00	00	00	00	00	00	02	00	42	45	-6.6%	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Mumps	00	01	01	01	00	00	01	02	00	06	01	247	237	+4.2%	
Measles	00	00	00	00	01	00	00	00	00	01	71	304	1681	-82.1%	
Rubella	00	00	00	00	00	00	00	00	00	00	00	06	07	-14.2%	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	07	12	-41.6%	
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	12	07	+71.4%	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	02	36	56	-35.7%	
Tuberculosis	103	10	13	06	23	05	09	07	21	197	212	5646	5661	-0.2%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Dengue Prevention and Control Health Messages

Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. **Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication**

ON STATE SERVICE