

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka

Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 43 No. 18

23rd – 29th April 2016

International Conference on Dengue and Dengue Haemorrhage Fever 2016 - (Part III)

This is the last in the series of 3 articles on International Conference on Dengue and Dengue Haemorrhage Fever 2016.

SYMPOSIUM 3 - VACCINE AND VACCINE PROBLEMS

Prof. Annlies Wilder Smith and Dr. Ananda Amarasinghe co-chaired symposium 3 on Vaccines and Vaccine Problems.

Dr. Shibas Biswal, associate medical director at Takeda Vaccine in Singapore gave an overview on Takeda's Dengue Vaccine Candidate. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) contains a molecularly characterized dengue serotype 2 virus and three recombinant viruses expressing the pre membrane and envelope structural genes for serotype 1,3 and 4 in the dengue serotype 2 virus genetic backbone.

Then Dr. Murga Vadivale, senior director, Dengue Medical Affairs Asia Pacific, Sanofi Pasteur in Singapore spoke on CYD TDV Vaccine Candidate Development. He mentioned that dengue vaccine is urgently needed as part of the integrated dengue prevention and control strategies in dengue endemic countries including Sri Lanka. The most advanced candidate is a tetravalent, live attenuated recombinant dengue vaccine (CYD TDV) from Sanofi Pasteur. The CYD TDV vaccine candidate has recently been approved for prevention of dengue in individuals 9 to 45 years of age living in endemic areas in Mexico, the Philippines, Brazil, and El Salvador; while two other candidates are close to enter into phase 3 efficacy trials.

Dr. Asitha De Silva, Professor in pharmacology at the Faculty of Medicine, University of Kelaniya spoke on vaccine clinical trials. He mentioned that more than half of under-five child deaths are due to diseases that are preventable and treatable through simple, affordable interventions. For some of the most deadly childhood diseases, such as Measles, polio, diphtheria, vaccines are available and can protect children from illness and death. However other infectious diseases like dengue, for which there is no specific treatment, continue to cause significant childhood morbidity and mortality. He also mentioned that since vaccines have a preventive role, the target population for vaccine is primarily healthy children and infants and therefore most of the vaccine studies are conducted in children.

SYMPOSIUM 4 – CONTROL STRATEGIES/ NEW INTERVENTIONS IN DENGUE CON-TROL

Prof. Scott O'Neill, Head of the "Eliminate Dengue" Research Program delivered his lecture on Wolbachia. Examining the potential use of inherited bacterial symbionts of insects known as 'Wolbanchia' is a novel method to interfere with arbovirus transmission. This work has now progressed from basic bench studies into open field trials in five countries.

Dr. Jacob Kumaresan and Prf. Duane J. Gubler were moderators of this session. It was a round

Page

1. Leading Article – International conference on Dengue and Dengue Haemorrhage Fever 2016-(Part III)	1
2. Summary of selected notifiable diseases reported $-(16^{th} - 22^{ud} A pril 2016)$	3
3. Surveillance of vaccine preventable diseases & AFP -(16^{th} – 22^{sd} April 2016)	4

Contents

WER Sri Lanka - Vol. 43 No. 18

23rd– 29th April 2016

table discussion with the participation of Prof. W. Abeyewickrame, Dr. Deepthi Perera, Dr. Kevin Goman, Dr. Rushika Perera and Prof. Scott O'Neill.

Prof. W. Abewickrama mentioned that their general objective is to established an operational model to control dengue in Sri Lanka using multiple vector control intervention, new product development, community engagement and optimal use of existing technologies and tools.

Dr. Rushika Perera told that the biochemical environment in the Aedes aegypti mid gut is significantly changed upon virus infection and their studies have shown that these changes are required for the virus to replicate and disseminate from the mid gut. Given the capability of these vectors to various ecological conditions and their vectorial capacity for several arboviruses, it is hypothesized that vector metabolism has a significant impact on disease transmission, vector competence and insecticide resistance, and presents a novel avenue that should be explored for intervention.

SYMPOSIUM 5 – PATHOGENESIS AND DIAGNOSIS

Prof. Suchithra Nimmantiya and Dr. Dharshan De Silva cochaired symposium 5 on Pathogenesis and Diagnosis.

Prof. Anavaj Sakuntabhai, who heads an internationally recognized research laboratory at the *Institut Pasteur* spoke on Asymptomatic dengue infection. He mentioned that the main objective of the DENFREE project is focus on finding key factors determining dengue transmission and dynamics in order to develop new tools and strategies for controlling dengue transmission. Dr. Neelika Malavige, Director of the Center for Dengue Research, University of Sri Jayawardanapura gave an account on pathogenesis of severe dengue. Endothelial dysfunction which leads to increased vascular permeability is the hallmark of severe dengue (SD). SD is commoner in secondary infections and it is presumed that both cross reactive T cells and antibodies could be contributing to SD due to an aberrant immune response to dengue response.

Dr. Yie -Hoe Lee from Singapore spoke on 'Are Cytokines Good Markers for Dengue Prognosis.' Prognosis of dengue remains a challenge in allowing early, objective triage of patients with dengue fevers of differing severity. Because molecular signaling seemingly proceeds gross morphological or observable clinical symptoms, the potential use of biochemical signals such as immune modulators (cytokines, chemokines and growth factors) for early prognosis of severe dengue is specially welcoming. Systemic reviews suggest patients with severe dengue have higher frequencies of IL 10 level. IFN gamma was another probable prognostic marker.

Prof. Shmala Devi Sekaran talked on Dengue Diagnostics. Due to the absence of pathognomonic clinical features that can distinguish Dengue from other febrile illnesses, laboratory confirmation is an essential part in the diagnosis process. Diagnosis today in many countries is still based on serology though the detection of NS1 has slowly become incorporated. Dengue diagnosis is not only important for clinical management of patients, but also for epidemiological surveillance, outbreak intervention and vaccine development and monitoring.

The conference was successfully concluded after the closing session with the participation of Prof. Duane Gubler, Prof Annelies Wilder Smith, Dr. Paba Palihawadana and Dr. HasithaTissera.

Compiled by Dr. S.W.A. Rajika of the Epidemiology Unit

WER Sri Lanka - Vol. 43 No. 18

23rd_	29th	Anril	2016

Table '	Table 1: Selected notifiable diseases reported by Medical Officers of Health 16th - 22nd April 2016 (17th Week)																												
SCD	* 0	100	87	100	100	100	100	100	92	100	100	100	80	50	80	100	71	83	06	85	89	86	94	100	83	100	85	93	
M	*⊢	81	80	79	91	77	100	06	83	100	100	50	80	50	80	57	14	67	69	62	58	86	53	91	67	73	54	75	
mani-	۵	0	ю	0	9	13	0	H	127	94	H	0	0	2	4	1	4	2	36	0	70	51	0	10	0	0	0	425	
Leishr asis	۲	0	0	0	0	0	0	0	2	4	0	0	0	0	0	0	0	0	2	0	с	0	0	0	0	0	0	Ħ	
ngitis	۵	18	18	29	19	39	18	20	4	S	15	ß	1	1	4	5	0	9	19	17	15	5	76	13	46	18	8	424	
Meni	◄	2	0	4	0	1	7	-	0	0	0		0	0	0	0	0	-	0	m	0	0	2			2	0	77	eness
xodu	B	174	165	06	54	16	49	104	86	81	96	m	2	16	Ч	27	34	80	111	33	92	37	68	30	71	143	35	1715	-Complet
Chicke	۲	6	9	e	2	0	н	9	ы	m	0	H	0	0	0	0	0	4	7	1	10	2	2	2	0	ъ	0	69	319 C* *.
lan les	۵	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	1	0	0	4	6	ent week:
Rabi	◄	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	the curre
Viral epatitis	۵	14	14	11	30	12	15	4	12	13	4	0	0	ъ	0	9	9	24	15	0	10	2	57	71	61	10	2	398	ovided for
Ĩ	۲	0	0	0	0	0	2	0	0		0	0	0	7	0		0	0	0	0	0	0		1		0	0	6	ls data pr
Typhus Fever	8	ε	9	4	32	10	25	39	32	20	494	18	35	7	S	4	0	11	ø	54	15		32	43	14	6	0	921	porting unit
	◄	0	0	0	4	0		0	0	0	4	0	0	0		0	0	1		0		0	2	0	0	0	0	15	ber of re
otospirosi	•	76	119	208	61	46	17	121	54	74	~	∞	∞	11	18	21	18	8	65	24	147	47	55	126	150	75	8	1572	ts 339 Num
Lep	◄	7	9	4	2		0	4	0	4	0	0	0		0	0	0	-	2		9	0	0	m	13	m	0	58	orting uni
Food isoning	•	13	2	15	18	2	∞	2	48	31	26	m		13	4	84	13	21	9	0	20	ъ	ß	6	15	22	8	397	nber of rep
_ д 	◄	0	0	0		0	0	0	0	0	2	0	0	2	0		0	0	0	0	0	0	0	4	0	0	0	10	Total nur
ric Fever	8	21	12	15	6	∞	19		0	ъ	41	19	12	∞	11	11	0	8		e	2	∞	ε	2	12	15	m	249	April, 2016 ⁻
Ente	٩	m	1	0	0	0	0	0	0		H	0	0		0	m	0	0	0	0	0	0	0	0	0	0	0	10	ore 22 nd /
cephaliti s	8	0	4	2	6			m		2	2	0	4	0	0	0	0	0	7	1	Η	2	7	1	13	10	m	74	1 on or bef or the year
Enc	◄	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	-	WRCD). received e cases fe
sentery	۵	51	30	32	46	11	30	26	13	23	87	16	ъ	4	8	103	6	19	74	19	27	12	34	17	91	17	28	832	iseases () to returns Cumulative
â	◄	m	0		2		4		0	0	4	0	0	0	0	ε	0	1	0	0	-	0	S	-	ъ			39	able D ss refers ek. B = (
ue Fever	8	5298	1876	1019	694	140	113	611	243	316	1147	41	99	127	82	248	71	221	572	487	224	138	206	133	648	471	310	15502	Communic *T=Timeline • current wee
Deng	٩	161	48	54	21		2	26	4	16	14	0	0	4	S	9	0	ß	11	6	7	m	e	4	35	19	ъ	463	Returns of during the
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	Source: Weekly I A = Cases reported
																												Ρ	age 3

'ag I

WER Sri Lanka - Vol. 43 No. 18

Table 2: Vaccine-Preventable Diseases & AFP

16th - 22nd April 2016 (17th Week)

23rd- 29th April 2016

Disease				No. of Ca	ses by l	Province	9	Number of cases during current	Number of cases during same	Total number of cases to	Total num- ber of cases to date in	Difference between the number of cases to date			
	w	С	S	N	Е	NW	NC	U	Sab	week in 2016	week in 2015	2016	2015	in 20156& 2015	
AFP*	00	00	00	00	00	00	00	00	00	00	00	17	22	-23.1%	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Mumps	01	00	01	00	00	00	01	01	01	05	03	134	123	+9.1%	
Measles	02	01	00	01	00	01	00	00	01	06	65	234	725	-67.1%	
Rubella	00	00	00	00	00	00	00	00	00	00	00	06	05	+20%	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	02	04	-50%	
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	00	00	00	00	0%	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	00	07	-100%	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	25	30	-16.6%	
Tuberculosis	77	19	19	10	13	09	00	14	01	162	385	2971	3201	-7.1%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Colonico, GM: Camparia, R.C. Kaldara, KD: Kaldara, KD: Matale, NE: Matale, KE: Kulwara Enya, GE: Galle, RD: Frandantota, MT: Matala, GT: Janna, KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Dengue Prevention and Control Health Messages

Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. P. PALIHAWADANA CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10