

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 42 No. 49

28th – 04th December 2015

Enhancing public health security at points of entry (PoE) to Sri Lanka (Part I) This is the first in a series of three articles on enhancing public health security at points of entry (PoE) to Sri Lanka

Global public health security

Infectious disease pandemics, radio-nuclear or toxic industrial accidents, conflicts and natural disasters have emerged as threats to global public health security during the past few decades. World Health Organization (WHO) defines global public health security in its 2007 World Health Report as the "activities required, both proactive and reactive, to minimize vulnerability to acute public health events that endanger the collective health of populations living across geographical regions and international boundaries". Lack of global public health security, has an impact on economic and political stability, trade, tourism, and, even on demographic stability.

Increased international air travel, with 1 billion people crossing international borders each year, has caused spread of infectious disease across the globe faster and farther. The speed of spread of disease through aircrafts is best illustrated by the outbreaks of SARS in 2003 and Influenza A in 2009; similarly round 50,000 merchant ships manned by over one million seafarers, carrying cargo across 150 countries, could spread infectious diseases through sea ports. The complex dynamics of an ever increasing international migration flow, in the present day emphasize the need to strengthen the points of entry (PoE) (airports, seaports, ground crossings) to prevent the international spread of infectious diseases, one of the major threats to the global public health security.

International health guarantine first appeared in the 14th Century, With the development of foreign trade, increasing naval transportation and newly-explored shipping routes. Infectious diseases like plague, cholera swept through Europe, and spread out. Europe experienced the most deadly infectious disease outbreak in the history when the Black Death, the infamous pandemic of bubonic plague, hit in 1347, killing a third of the human population. To prevent the spread of these diseases, some countries adopted guarantine of ships which came from epidemic areas. Thus the term "quarantine" dates back to the 14th century when people arriving from plague-infected areas to the port of Ragusa were isolated. This period of isolation was set at 40 days and the word quarantine derived from the word "guaranta" the Italian term for "forty". By the end of the 19th century, many international conferences on disease control had been held, focusing on the containment of epidemics within their regions of origin.

International health guarantine

International Health Regulations

The first International Sanitary Convention of 1892, became the International Sanitary Regulations. Through many revisions, in 1951, WHO adopted the existing conventions at that time as the International Sanitary Regulations, which became binding on WHO member states. However, international sanitary regulations of 1951 highlighted that measures at PoE alone could prevent the spread of infectious diseases across international borders. It intended to monitor and control only 6 serious infectious diseases: These Sanitary Regulations of 1951 were renamed as the International Health Regulations (IHR) in 1969.

Contents	Page
1. Leading Article – Enhancing public health security at point of entry (PoE) to Sri Lanka (Part I)	1
2. Summary of selected notifiable diseases reported - (21 st - 27 ^{sth} November 2015)	3
3. Surveillance of vaccine preventable diseases & AFP - $(21^{d} - 27^{d} November 2015)$	4

WER Sri Lanka - Vol. 42 No. 49

However, over time, compliance with the regulations diminished, and the global surveillance system under the IHR 1969 gradually faded, diminished in relevance and effectiveness. With the threat of emerging and re-emerging infectious diseases such as Ebola virus in Congo and the epidemic of Plague in India in the 1990's, the inadequacy of mechanisms available for controlling the cross-border outbreaks were recognised, resulting in a resolution at the World Health Assembly in 1995. This resolution was to revise the International Health Regulations of 1969, to help in global governance of disease reporting and responses. Yet there was only little progress until the emergence of the SARS virus in 2003, which lead to a revised IHR to be adopted by the World Health Assembly in 2005, which came into force in 2007.

The IHR (2005) has shifted the focus of infectious disease in 3 ways: It is not limited to any specific diseases, and covers all public health emergencies. It also replaced the historical lists of notifiable diseases with an algorithm. The 'control at boarders' was supplemented by 'containment at the source', and used 'adapted response' based on real-time epidemiological evidence rather than 'pre-determined' measures.

The goal of the IHR is the global public health security and to prevent the spread of diseases and events across international borders. The IHR is a set of legally binding regulations, for the WHO member states. It provides a global framework agreed upon by the member states, for the collective international management of epidemics and other public health emergencies, while minimizing disruption to travel, trade and economies, and at the same time respecting individual human rights. Countries have agreed to share information promptly and to develop and sustain the core capacities needed. This commitment laid the foundation for a global disease detection and response network, capable of containing emerging disease threats. The implementation of IHR (2005) requires mobilization of national resources for strengthening the national capacity for early detection of unusual diseases or events by effective national surveillance and for response (investigation, control measures) at all levels (local, regional, and national).

The IHR (2005) identifies several public health hazards: biological (infectious, zoonotic, food born), chemical and radionuclear material which may cause an international public health emergency. They can be manifested as imported human cases, infected or contaminated vectors or contaminated goods. The international response required today is not only to the known, but also to the unknown diseases that may arise.

There are numerous examples where infectious diseases and events have spread across the globe causing great adverse health, economic and social consequences. There was no better eye opener to the world than India in 1994, of the risk of reemergence of infectious diseases (plague). The international

28th – 04th December 2015

emergence of infectious diseases (plague) . The international media attention given resulted in devastating economic consequences for India, several countries over-reacted exceeding the measures in IHR (1969) and imposed unnecessary travel and trade restrictions.

The outbreak of SARS in 2003 caused 8098 cases and 774 deaths in 26 countries and showed the world how quickly a new disease can spread along the routes of international air travel. Spread through aircrafts covers a long-range geographically; infectious diseases are mostly in latency and patients are difficult to be discovered and controlled; sources of travellers are various, therefore differences in languages, cultures, lifestyles and religious believes have certain effects on the spread of diseases.

Ebola virus disease (EVD) is among the most virulent pathogens known to infect humans and require containment at their source, due to their acute nature and the resultant fatality. The first Ebola virus disease (EVD) outbreaks occurred in 1976 in remote villages in Central Africa. The current outbreak in West Africa, first reported in March 2014, is the largest and most complex outbreak since the Ebola virus was first discovered. It has also spread between countries starting in Guinea then spreading across land borders to Sierra Leone and Liberia, by air to Nigeria and USA, and by land to Senegal and Mali.

Compiled by Dr. Vindya Kumarapeli

MBBS, MSc, MD, Consultant Community Physician – based on the Dr. F.A. Wickramasinghe Oration 2015 of the College of Community Physicians of Sri Lanka.

WER Sri Lanka - Vol. 42 No. 49

Table 1: Selected notifiable diseases reported by Medical Officers of Health

28th – 04th December 2015 21st - 27th Nov 2015 (48th Week)

			ecte										,			-							ν-Ζ	/ u1 F			•	
WRCD	* *	19	47	31	13	54	ø	25	25	0	0	50	20	50	60	36	29	17	22	38	42	43	18	9	39	18	54	27
WF	*–	81	53	69	87	46	92	75	75	100	100	50	80	50	40	64	71	83	78	62	58	57	82	91	61	82	46	73
nani-	в	1	2	0	17	29	2	2	302	144	0	0	Ч	8	6	0	ω	9	138	m	326	119	7	38	17	0	0	1174
Leishmani- asis	◄		0	0	0		0	0	4		0	0	0	1	0	0	0	0	2	0	0	2	0	0	0	0	0	12
gitis	в	43	34	58	28	43	53	58	12	20	19	2		20	ы	18	ы	10	38	32	33	26	100	31	53	57	12	811
Meningitis	A	0	2	1	2	2	0	0	0		0		0	0	0	0	0	0		0	0	0	4	0	н	0		16
	в	450	291	276	228	31	135	256	122	230	204	19	~	40	ы	62	196	108	390	65	184	141	206	66	192	248	107	4292
Chickenpox	A	2	8	4	0	0	m	2	m	9	0	0	0	0	0	0		10	7	m	4	-	0	m	4	12		74
	в	4	0	e	0	0	0	0	0		7		0	2			0		7	H		0	m		н	0	0	30
Human Rabies	٩	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Viral Hepatitis	в	47	134	36	142	30	63	12	43	50	14	0	0	2	4	12	14	79	44	m	25	12	217	464	300	83	7	1837
Hel <	∢	2	2	0	4	0		0	0	0	0	0	0	0	0	0		4	0	0	0	0	4	7	4	0	0	24
Typhus Fever	в	10	11	9	72	6	71	108	58	48	624	27	21	13	6	4	2	26	31	22	23	1	133	83	68	52	0	1534
Typhu	٩	0	0	0	2	0	0	7	0	2	24	0	0	0	0	0	0	0	0	0		0		0	0		0	33
Leptospirosis	в	304	401	396	119	59	41	263	141	258	18	2	ø	18	7	24	18	16	321	44	267	95	80	154	367	318	11	3750
	A	7	5	19	с	0	0	9	10	6	0	0	0	0	0	1	2	ч	22	0	38	ю	2	2	ы	m	0	143
od ning	в	123	32	153	63	13	10	26	31	45	87	31	ы	28	16	182	19	56	28	б	67	12	27	ы	6	18	64	1159
Food Poisoning	A	2	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	ы	0	0	0	0	0	0	0	0	с	18
eric er	в	100	34	57	31	10	33	6	6	ъ	171	19	ъ	74	16	29	2	37	7	6	4	15	11	17	43	86	1	834
Enteric Fever	A	m	1	1	0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~
Encephaliti s	в	15	12	8	9	2	4	ω	ы	10	11		H	9	2	~	2	0	8	ы	ы	5	14	ы	21	16	1	175
Ence	۲	0	0	0	0	0	0	0	0	2	ч	0	0	0	0	0	0	0	0	0	0	0	0		2		0	~
Dysentery	в	176	87	113	146	41	317	86	49	65	1009	100	17	29	41	323	43	123	230	118	155	58	242	118	290	71	120	4167
Dyse	A	ω	с	e	2		0	7	0		21	0	0	1	9	~	0	7	15	m		2	2		ы	ო	с	87
Fever	в	8526	3565	1342	1154	371	453	885	347	417	1579	83	85	135	126	1393	56	538	1149	658	357	221	519	190	917	611	481	25858
Dengue Fever	A	258	60	38	25	2	ы	27	6	12	79	ц.	0	0	0	6	0	m	21	30	6	2	12	6	10	13	5	639
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmunei	SRILANKA

COULIPIERENESS I= limeliness reters to returns received on or before 2/ A = Cases reported during the current week. B = Cumulative cases for the year.

WER Sri Lanka - Vol. 42 No. 49

Table 2: Vaccine-Preventable Diseases & AFP

28th – 04th December 2015

21st - 27th Nov 2015 (48th Week)

Disease			N	o. of Cas	es by P	rovince		Number of cases during current	Number of cases during same	Total number of cases to	Total num- ber of cases to	Difference between the number of cases to date		
	w	С	S	N E NW NC U Sab						week in 2015	week in 2014	date in 2015	date in 2014	in 2014 & 2015
AFP*	00	00	00	00	00	00	00	01	00	01	02	65	77	-16.1%
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0%
Mumps	00	00	00	01	00	00	00	02	00	03	10	357	623	-43.1%
Measles	02	01	02	00	01	01	02	01	00	10	24	2522	3026	-17.1%
Rubella	00	00	00	00	00	00	00	00	00	00	00	08	17	-53.1%
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	04	-100%
Tetanus	00	00	00	00	00	00	00	00	00	00	01	16	14	+14.2%
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	00	00	00	00	0%
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	12	22	-45.4%
Whooping Cough	00	00	00	00	00	02	00	00	01	03	02	96	77	+25.1%
Tuberculosis	28	16	24	10	08	15	00	02	02	96	181	9006	9021	-0.1%

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Dengue Prevention and Control Health Messages

Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. P. PALIHAWADANA CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10