

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 42 No. 20

09th - 15th May 2015

What is food Safety?

Food Safety

Assurance that food will not cause harm to the consumer when it is prepared and/or eaten according to its intended use.

Major foodborne illnesses and causes

Foodborne illnesses are usually infectious or toxic in nature and caused by bacteria, viruses, parasites or chemical substances entering the body through contaminated food or water.

Foodborne pathogens can cause severe diarrhoea or debilitating infections including meningitis. Chemical contamination can lead to acute poisoning or long-term diseases, such as cancer. Foodborne diseases may lead to longlasting disability and death. Examples of unsafe food include uncooked foods of animal origin, fruits and vegetables contaminated with faeces, and raw shellfish containing marine biotoxins.

Bacteria:

• Salmonella, Campylobacter, and Enterohaemorrhagic Escherichia coli are among the most common foodborne pathogens that affect millions of people annually sometimes with severe and fatal outcomes. Symptoms are fever, headache, nausea, vomiting, abdominal pain and diarrhoea. Examples of foods involved in outbreaks of salmonellosis are eggs, poultry and other products of animal origin. Foodborne cases with Campylobacter are mainly caused by raw milk, raw or undercooked poultry and drinking water. Enterohaemorrhagic Escherichia coli is associated with unpasteurized milk, undercooked meat and fresh fruits and vegetables.

- Listeria infection leads to unplanned abortions in pregnant women or death of newborn babies. Although disease occurrence is relatively low, listeria's severe and sometimes fatal health consequences, particularly among infants, children and the elderly, count them among the most serious foodborne infections. Listeria is found in unpasteurised dairy products and various ready-to-eat foods and can grow at refrigeration temperatures.
- Vibrio cholerae infects people through contaminated water or food. Symptoms include abdominal pain, vomiting and profuse watery diarrhoea, which may lead to severe dehydration and possibly death. Rice, vegetables, millet gruel and various types of seafood have been implicated in cholera outbreaks.

Antimicrobials, such as antibiotics, are essential to treat infections caused by bacteria. However, their overuse and misuse in veterinary and human medicine has been linked to the emergence and spread of resistant bacteria, rendering the treatment of infectious diseases ineffective in animals and humans. Resistant bacteria enter the food chain through animals (e.g. Salmonella through chickens). Antimicrobial resistance is one of the main threats to modern medicine.

Viruses:

Norovirus infections are characterized by nau-

Contents	Page
1. Leading Article – Food Safety	1
2. Summary of selected notifiable diseases reported – $(02^{*d} - 08^{*h} May 2015)$	3
3. Surveillance of vaccine preventable diseases & $AFP - (02^{nd} - 08^{nt} May 2015)$	4

WER Sri Lanka - Vol. 42 No. 20

sea, explosive vomiting, watery diarrhoea and abdominal pain. Hepatitis A virus can cause long-lasting liver disease and spreads typically through raw or undercooked seafood or contaminated raw produce. Infected food handlers are often the source of food contamination.

Parasites:

Some parasites, such as fish-borne trematodes, are only transmitted through food. Others, for example Echinococcus spp, may infect people through food or direct contact with animals. Other parasites, such as Ascaris, Cryptosporidium, Entamoeba histolytica or Giardia, enter the food chain via water or soil and can contaminate fresh produce.

Prions:

Prions, infectious agents composed of protein, are unique in that they are associated with specific forms of neurodegenerative disease. Bovine spongiform encephalopathy (BSE, or "mad cow disease") is a prion disease in cattle, associated with the variant Creutzfeldt-Jakob Disease (vCJD) in humans. Consuming bovine products containing specified risk material, e.g. brain tissue, is the most likely route of transmission of the prion agent to humans.

Chemicals:

Of most concern for health are naturally occurring toxins and environmental pollutants.

- Naturally occurring toxins include mycotoxins, marine biotoxins, cyanogenic glycosides and toxins occurring in poisonous mushrooms. Staple foods like corn or cereals can contain high levels of mycotoxins, such as aflatoxin and ochratoxin. A long-term exposure can affect the immune system and normal development, or cause cancer.
- Persistent organic pollutants (POPs) are compounds that accumulate in the environment and human body. Known examples are dioxins and polychlorinated biphenyls (PCBs), which are unwanted byproducts of industrial processes and waste incineration. They are found worldwide in the environment and accumulate in animal food chains. Dioxins are highly toxic and can cause reproductive and developmental problems, damage the immune system, interfere with hormones and cause cancer.
- Heavy metals such as lead, cadmium and mercury cause neurological and kidney damage. Contamination by heavy

09th May 15th 2015

The evolving world and food safety

Safe food supplies support national economies, trade and tourism, contribute to food and nutrition security, and underpin sustainable development.

Urbanization and changes in consumer habits, including travel, have increased the number of people buying and eating food prepared in public places.

These challenges put greater responsibility on food producers and handlers to ensure food safety. Local incidents can quickly evolve into international emergencies due to the speed and range of product distribution.

Food safety: a public health priority

Unsafe food poses global health threats, endangering everyone. Infants, young children, pregnant women, the elderly and those with an underlying illness are particularly vulnerable.

What happens in Sri Lanka?

National Food Safety Programme

In considering the safety of food, many food-related industries consider introducing Food Safety Management Systems (FSMS) as a safeguard of their business interests.

Food Act No 26 of 1980

The act controls manufacture, importation, transport, sale, distribution, advertisement & labelling of food. Medical Officer of Health, Public Health Inspector and Food and Drug inspectors are the Authorized Officers under the food act.

Powers of the Authorized Officers

They can; Seize & detain any article, Institute Prosecutions, Arrest persons who commit offences under the Act (without a warrant).

Sources:

Food safety, available at <u>http://www.who.int/mediacentre/</u> factsheets/fs399/en/

Food safety, available at http://www.qualityassociation.org/ info center.html#National Food Safety Programme

Compiled by Dr. C U D Gunasekara of the Epidemiology Unit.

WER Sri Lanka - Vol. 42 No. 20

WER Sri Lanka - Vol. 42 No. 20	09 th May 15 th 2015
Table 1: Selected notifiable diseases reported by Medical Officers of Health	02 ^{nd –} 08 th May 2015 (19 th Week)

			CCI							•			-								_	2			ay		•	_
WRCD	č*	19	40	8	σ	46	0	95	17	0	8	25	0	0	20	14	29	œ	~	46	32	71	18	6	17	9	23	23
ЧМ	*⊥	81	60	92	91	54	100	ß	83	100	92	75	100	100	80	86	71	92	93	54	68	29	82	91	83	91	77	77
nani-	в	0	2	0	2	m	0	0	113	29	0	0	0	2	4	0	0		45		117	46	9	12	4	0	0	387
Leishmani- asis	A	0	0	0		0	0	0	ω	4	0	0	0	0	0	0	0	0		0	m	0	0		0	0	0	18
itis	в	19	6	18	ø	ω	27	13	4	10	6	0	0	m	2	10	4	m	11	12	12	12	33	7	18	26	4	274
Meningitis	A	2	0		÷	0	2	0	0	0	0	0	0	0	0	0	-	0	7	0	0	0	0	0	H	m	0	13
xodu	в	215	82	132	96	б	39	62	55	114	110	11	ы	32	1	18	107	38	200	28	86	68	64	42	52	101	56	1823
Chickenpox	A	11	2	ы	0	2	9	0	2	10	13	0		0	0	0	9	5	10	0		0	2	ы		10	0	68
	в	m	0		0	0	0	0	0	0	2	1	0	2	0	0	0			0	0	0	2	ц,	0	0	0	14
Human Rabies	A	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Viral Hepatitis	в	16	73	14	72	19	39	4	22	16	8	0	0		2	0	2	9	21		ø	m	73	31	122	50	0	603
Hep <	A	0	2	0	m	0	0	0	m	1	1	0	0	0	0	0	0	0	m	0	0	0	т	1	1	0	0	18
Typhus Fever	в	5	6	0	32	5	33	22	22	18	487	12	16	12	6	2	0	7	15	6	15	1	49	34	28	25	0	861
Typhu	A	ц.	0	0	2		2	0		ц.	7	-1	0		0	2	0			0	0	0			н		0	25
Leptospirosi s	в	109	190	130	32	26	11	57	37	80	11	1	ω	11	m	m	7	11	113	20	135	42	28	113	136	125	2	1441
Lepto	A	m	ß	4	2	4		0	2	4	0	0	0	0	0		0	0	9	7	9	0		0	m	Ħ	0	55
Food Poisoning	в	54	12	66	25	ω	0	9	7	44	35	26	1	m	1	109	2	31	13	9	48	m	9	2	1	4	28	536
Pois	A	0	0	н	0	0	0	0	0	0	0	0	0	0	0		0	4		0	0	0	0	0	0	0	0	~
Enteric Fever	в	32	14	17	15	4	6	2	4	4	133	5	S	32	ß	12	Ţ	17	m	2	2	7	4	6	22	39	1	400
Ent	A	0		1	0	0	0	0	0	0	-	0	0	m	0	0	0	0	0	0	0	0	0	0	0	4	0	10
Encephalit is	в	4	m	4	ъ	0	m	1	0	m	8	0		9	2	4		0	2	ω		2	Μ	H	4	7	0	68
Ence	A	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	4
Dysentery	в	84	32	43	50	22	131	24	11	33	267	39	4	10	11	114	21	19	70	15	26	24	54	44	116	35	56	1355
Dyse	A	9	ц.	4	0		10	0	0	1	14	0	0	0	0	2	0	ч	m	÷	0	0	2	1	4		1	53
Fever	в	3954	1829	675	597	304	84	285	145	203	1006	32	71	66	74	1068	22	393	704	400	249	117	319	100	469	256	375	13797
Dengue Fever	A	81	22	28	15		2	0	2	4	6	0		2	m	29	0	14	13	Ŀ	2	0		2	25	14	S	277
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA

-Timeliness refers to returns received on or before 08th May, 2015 Total number of reporting units 337 Number of reporting units data provided for the current week: 264C**+Completeness

09th May 15th 2015

Table 2: Vaccine-Preventable Diseases & AFP

02nd - 08th May 2015 (19th Week)

Disease			N	o. of Cas	-	rovince				Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	w	С	S	N	E	NW	NC	U	Sab	week in 2015	week in 2014	2015	2014	in 2014& 2015	
AFP*	01	00	01	00	00	00	00	00	00	02	02	25	33	-24.2%	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	%	
Mumps	01	01	01	01	00	00	01	00	03	08	06	147	283	-48.1%	
Measles	17	03	09	00	03	04	03	02	08	49	33	865	1649	-47.6%	
Rubella	00	00	00	00	00	00	00	00	00	00	00	05	10	-50%	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	03	%	
Tetanus	00	00	00	00	00	01	00	00	00	01	00	06	08	-25%	
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	00	07	17	-59.1%	
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	00	00	00	00	%	
Whooping Cough	00	00	00	01	00	00	00	00	00	01	01	31	25	+24%	
Tuberculosis	25	00	07	03	03	03	00	02	41	84	113	3345	3669	-9.1%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Dengue Prevention and Control Health Messages

Look for plants such as bamboo, bohemia, rampe and banana in your surroundings and maintain them

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. P. PALIHAWADANA CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10