

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 40 No.51

14th – 20th December 2013

Rotavirus Gastro-Enteritis (Part I)

This is the first in a series of two articles on Rota virus Gastro-Enteritis

Background

Rotaviruses infect nearly every child by the age of 3-5 years and are globally the leading cause of severe, dehydrating diarrhoea in children aged <5 years. WHO estimates that in 2008, approximately 453 000 rotavirus gastroenteritis (RVGE)-associated child deaths occurred worldwide. These fatalities accounted for about 5% of all child deaths and a cause-specific mortality rate of 86 deaths per 100 000 population aged <5 years. About 90% of all rotavirus-associated fatalities occur in low-income countries in Africa and Asia and are related to poor health care. National cause-specific mortality rates ranged from 474/100 000 (Afghanistan) to < 1/100 000 (63 countries); in 4 countries (Afghanistan, Burundi. Chad and Somalia) mortality rates of >300/100 000 were recorded.

Epidemiology

In low-income countries, the median age at the primary rotavirus infection ranges from 6 to 9 months (80% occur among infants <1 year old) whereas in high income countries, the first episode may occasionally be delayed until the age of 2–5 years, though the majority still occur in infancy (65% occur among infants <1 year old).

In most low income countries in Asia and Africa, rota virus epidemiology is characterized by one or more periods of relatively intense rotavirus circulation against a background of year-round transmission, whereas in high income countries with temperate climates a distinct winter seasonality is typically observed.

This difference, as well as differences in health care availability and childhood co-morbidity, drives the marked inequality in rotavirus disease burden between low and high income countries.

Each year during the pre-vaccination era 1986–2000, >2 million children worldwide were hospitalized for rotavirus infections.

In a recent report of sentinel hospital-based rotavirus surveillance from 35 nations representing each of the 6 WHO Regions and different economic levels, an average of 40% (range 34%– 45%) of hospitalizations for diarrhoea among children aged <5 years were attributable to rotavirus infection.

The universal occurrence of rotavirus infections even in settings with high standards of hygiene testifies to the high transmissibility of this virus.

The pathogen

Rotaviruses are classified as a genus in the family of Reoviridae. The triple-layered viral particle encompasses a viral genome consisting of 11 segments of double-stranded RNA that encode 6 structural viral proteins (VPs) and 5 or 6 nonstructural proteins(NSPs). Reassortment of the 11 gene segments may take place in co-infected host cells during the viral replication cycle. Formation of re-assortants is in part responsible for the wide variety of rotavirus strains found in nature; even re-assortants of animal-human strains have been identified. The outermost viral layer contains the viral proteins VP7 and VP4, which elicit the production of neutralizing antibodies in the host and hence are considered important for protective immunity. In human rotaviruses, at least 12 different VP7 antigens (G-types) and 15 different VP4 antigens (P-types) have been identified. As the combination of G- and P-types can vary independently, a binomial typing system is used to identify strains. Currently, 5 G-P combinations (G1P[8], G2P[4], G3P[8], G4P[8]) and G9P[8]) account for approximately 90% of all human rotavirus infections in many parts of the world; type G1P[8] is the most prevalent combination. However, data from countries in Asia and Africa show greater strain diversity with several rotavirus types circulating simultaneously. The prevalent types may vary from one season to the next, even within the same geographical area. The type of rotavirus does not usually correlate with the severity of the disease. There are currently no known laboratory markers for rotavirus virulence.

During the first episode of rotavirus infection, rota viruses are shed for several days in very high concentrations (>10¹² particles/gram) in the

	Contents	Page
1.	Leading Article – Rotavirus Gastro-Enteritis (Part I)	1
2.	Surveillance of vaccine preventable diseases & AFP (07th December – 13th December 2013)	3
3.	Summary of newly introduced notifiable diseases (07th December – 13th December 2013)	3
4.	Summary of selected notifiable diseases reported (07 th $m{D}$ ecember – 15 th $m{D}$ ecember 2013)	4

WER Sri Lanka - Vol. 40 No. 51

stools and vomitus of infected individuals. Transmission occurs primarily by the faeco-oral route directly from person to person, or indirectly via contaminated fomites.

Disease

Rotavirus infections affect primarily the mature enterocytes on the tips of the small intestinal villi. Destruction of these cells reduces the absorptive capacity of the villi, resulting in diarrhoea. The clinical spectrum of rotavirus disease is wide, ranging from transient loose stools to severe diarrhoea and vomiting causing dehydration, electrolyte disturbances, shock and death. In typical cases, following an incubation period of 1-3 days, the onset of disease is abrupt, with fever and vomiting followed by explosive watery diarrhoea. Without adequate fluid replacement, dehydration may ensue. Detailed clinical scoring systems have been developed to facilitate comparison of disease severity, particularly in vaccine trials. Gastrointestinal symptoms normally disappear within 3-7 days, but may last for up to 2-3 weeks. Although in most cases, recovery is complete, fatalities due to RVGE may occur, mainly in children ≤1 year of age.

No specific therapy is currently available against rotaviruses. As with other childhood diarrhoeas, the cornerstones of treatment are fluid replacement to prevent dehydration and zinc treatment which decreases the severity and duration of diarrhoea. Solutions of low-osmolality oral rehydration salts (ORS) are more effective in replacing fluids than previous ORS formulations. Additional treatment measures during the diarrhoeal episode include continued feeding, including breast feeding, and if ORS is not available, use of appropriate fluids available at home

Laboratory Diagnosis

An aetiological diagnosis of rotavirus gastroenteritis requires laboratory confirmation. A range of diagnostic tests are commercially available: enzyme immunoassays for detection of rotavirus antigen directly in stool specimens are widely used, as are also the less sensitive, but rapid and simple-to-use test strips and latex agglutination assays. Reverse transcription polymerase chainreaction (RT-PCR), which is highly sensitive in detecting small concentrations of rotavirus in stool specimens, is also used for strain identification and further differentiation.

Protective immunity

Protection against rotavirus infection is mediated by both humoral and cellular components of the immune system. Following the first infection, the serological response is directed mainly against the specific viral serotype (i.e. a homotypic response), whereas a broader, heterotypic antibody response is elicited following ≥1 subsequent rotavirus infections.

A study that monitored 200 Mexican infants from birth to 2 years of age by weekly home visits and stool collections, detected on the basis of the faecal excretion of virus or a sero-logic response a total of 316 rotavirus infections, of which 52% were first and 48% repeated infections. Children with 1, 2 or 3 previous infections had progressively lower risk of subsequent rotavirus infection (adjusted relative risk, 0.62, 0.40, and 0.34 respectively) or of diarrhoea (adjusted relative risk, 0.23, 0.17, and 0.08) than children who had no previous infections. Subsequent infections were significantly less severe than first infections (p=0.02) and second infections were more likely to be caused by another G type (p=0.05). However, one study from India reported that the risk of severe disease continued after several re-infections.

In immunocompromised patients, natural rotavirus infection is not regularly associated with severe diarrhoea or systemic disease, although shedding of the virus may be prolonged. However, individuals with congenital immunodeficiency, bone marrow transplantation or solid organ transplantation sometimes experience severe, prolonged and even fatal RVGE.

The immune correlates of protection against rotavirus infection are incompletely defined, but the immune responses to the VP4 and VP7 proteins are generally believed to be important. Serum anti-rotavirus IgA antibody responses have been used as a measure of immunogenicity of all the live attenuated rotavirus vaccines evaluated.

Source-Rota Virus vaccine-available from <u>http://www.who.int/</u> wer/2013/wer8805.pdf

Compiled by Dr. Madhava Gunasekera of the Epidemiology Unit

Table 3 : Water Quality SurveillanceNumber of microbiological water samples - Nove /2013

District	MOH areas	No: Expected *	No: Received
Colombo	12	72	55
Gampaha	15	90	67
Kalutara	12	72	NR
NHIS	2	12	22
Kandy	23	138	22
Matale	12	72	7
Nuwara Eliya	13	78	NR
Galle	19	114	81
Matara	17	102	30
Hambantota	12	72	NR
Jaffna	11	66	22
Kilinochchi	4	24	2
Manner	5	30	35
Vavuniya	4	24	23
Mullatvu	4	24	18
Batticaloa	14	84	16
Ampara	7	42	0
Trincomalee	11	66	8
Kurunegala	23	138	NR
Puttalam	9	54	6
Anuradhapura	19	114	50
Polonnaruwa	7	42	0
Badulla	15	90	54
Moneragala	11	66	79
Rathnapura	18	108	9
Kegalle	11	66	68
Kalmunai	13	78	NR

to be continued.

WER Sri Lanka - Vol. 40 No. 51

14th – 20th December 2013

 Table 4:
 Selected notifiable diseases reported by Medical Officers of Health

07th Dec-13th Dec(50th Week)

	-											J	-		-	-		-				-			-		· • ·		,
SD %	C**	8	60	54	22	23	38	16	25	0	17	75	60	75	80	29	71	75	33	38	42	14	29	55	72	6	46	36	
WRC	*T	92	40	46	78	77	62	84	75	100	83	25	40	25	20	71	29	25	67	62	58	86	71	45	28	91	54	64	
naniasis	B	-	5	0	5	13	0	3	349	103	0	13	4	16	15	0	3	30	60	12	421	170	7	14	18	2	1	1265	
Leishn	A	0	0	0	0	0	0	1	2	2	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	9	
ngitis	B	73	96	84	23	39	15	47	55	06	58	7	7	36	7	8	20	5	105	36	106	23	73	28	06	112	13	1256	
Menir	А	3	0	0	3	0	٦	0	0	3	0	0	0	0	0	0	0	-	2	1	3	0	0	0	0	0	0	17	
kenpox	B	455	173	286	159	48	164	334	101	263	153	2	12	23	8	46	102	41	372	88	174	145	136	66	202	352	106	4011	
Chic	A	2	0	16	5	0	12	8	0	-	4	0	0	0	0	0	0	0	6	0	1	2	٦	0	0	10	5	76	
Ra- es	В	-	0	0	0	0	0	2	0	2	7	2	0	2	2	с	0	-	-	2	2	2	-	2	-	0	0	28	patitis
is H bid	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7 0	-Viral Hep
Hepatit	В	88	194	29	129	60	25	17	94	153	17	0	5	4	2	15	11	4	64	7	29	36	47	193	580	252	5	5 205	teness / Hepatitis*₌
>	A	0	4	0		0	0	0	-		0	0	0	0	0	0	0	0	-	0	-	0	0	0	8	8	0	1 2!	-Complet s Fever, V
Fever	В	6	25	9	10	4	65	67	99	95	37!	17	20	3	7	2	1	15	52	14	26	3	95	69	75	74	3	129	k:214 C** ∎*=Typhu
T C	A	0	-	0	-	0	0	-	2	0	10	0	0	0	0	0	0	0	2	0	-	0	1	0	0	0	0	5 19	urrent wee 1g, T Feve
eptospiro sis	В	214	472) 433	2 92	68	33	239	179	172	6	6	15	51	38	42	40	61	384	44	329	179	61	206	402	303	11	9 4086	led for the cu ood Poisonir
ig Le	A	0	-	10		-	7 0	6	-	4	4	0	0	0	0	0	0	0	6	0	6	3	0	4	2	8	0	7 79	lata provic oison* =F
oisonir	В	59	40	27	24	10	21.	89	38	30	1	2	36	20	47	74	12	°	31	36	71	73	12	38	20	11	13(126	ting units c
4	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	5	er of repor Enteric F
Fever	В	169	52	83	31	25	17	7	16	30	334	16	71	14	10	11	5	9	43	18	3	14	22	26	43	36	9	1108	337. Numbe s, E Fever*=
	A	4	0	0	0	0	0	0	0		വ	0	0	0	0	0	0	0	-	-	0	0	0	0	1	3	0	0 16	rting units nan Rabie
cephal tis	В	18	23	21	13	4	4	19	с	17	13	0	ε	14	3	2	-	°	43	7	17	3	5	7	84	17	3	35(ier of repo ies*= Hur
En	A		0		-	0	0	0	0		2	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	3 7	otal numb ear. H Rab
sentery	В	227	215	192	167	114	172	131	67	98	457	53	76	76	30	383	199	74	226	81	112	98	212	125	391	143	194	431:	CD). Iber , 2013 T ses for the y
Dy	A	4	3	3	с	0	9	4	-	4	13	3	0	0	0	2	0	0	7	3	-	2	2	0	0	4	6	80	ises (WR))7 th Decem
ue Fever	В	10107	3633	1779	1707	468	259	850	329	470	728	63	68	81	121	541	207	193	2700	893	526	478	516	263	1685	1183	503	30351	unicable Disea ed on or before C week. B = Cum
Deng	А	256	44	32	28	03	05	13	07	10	26	0	0	0	0	4	1	0	24	16	13	6	3	2	4	24	1	522	s of Commu urns receive the current
RDHS Division		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRI LANKA	Source: Weekly Return: *T=Timeliness refers to ret A = Cases reported during

Page 3

WER Sri Lanka - Vol. 40 No. 51

Table 1: Vaccine-Preventable Diseases & AFP

14th – 20th December 2013

07 th Dec ⁻ 13 th Dec 2013	(50 th Week)
---	-------------------------

Disease			Γ	lo. of Cas	ses by P	rovince	1	Number of cases during current	Number of cases during	Total number of cases to date in	Total num- ber of cas- es to date in	Difference between the number of cases to date		
	W	С	S	N	E	NW	NC	U	Sab	week in 2013	week in 2012	2013	2012	in 2013 & 2012
AFP*	00	01	00	00	00	00	00	00	00	01	01	101	73	+ 38.3%
Diphtheria	00	00	00	00	00	00	00	00	00	-	-	-	-	-
Mumps	01	00	03	03	00	01	01	00	04	13	25	1452	4231	- 65.7%
Measles	14	01	19	00	02	05	00	00	02	43	05	3883	71	+ 5369.0%
Rubella	00	00	00	00	00	01	00	00	00	00	-	27	-	-
CRS**	00	00	00	00	00	00	00	00	00	-	-	-	-	-
Tetanus	00	00	00	00	00	00	00	00	00	00	00	24	13	+ 84.6%
Neonatal Teta- nus	00	00	00	00	00	00	00	00	00	-	-	-	-	-
Japanese En- cephalitis	00	00	00	00	00	00	00	00	00	00	-	68	-	-
Whooping Cough	00	01	01	00	00	00	00	00	00	00	01	85	99	-14.1%
Tuberculosis	134	172	75	13	14	11	15	08	28	470	127	8366	8370	- 0.04%

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullativu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Influenza Surveillance in Sentinel Hospitals - ILI & SARI (Oct /2013)												
Month	Human			Animal								
	No Received	Infl A untyped	Infl B	A(H1N1)pdm09	A(H3N2)	Pooled samples	Serum Samples	Posi- tives				
November	216	1	9	9	25	457	300	0				

Source: Medical Research Institute & Veterinary Research Institute

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. P. PALIHAWADANA CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE