

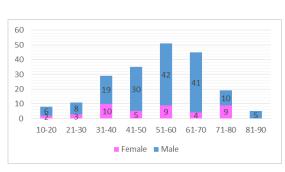
WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

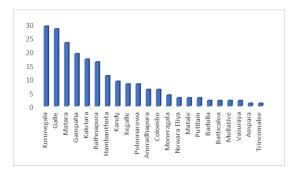
Vol. 51 No. 17

20th - 26th Apr 2024


Understanding the factors that may contribute to deaths from leptospirosis in Sri Lanka:

Analysis of the 2023 mortality data II

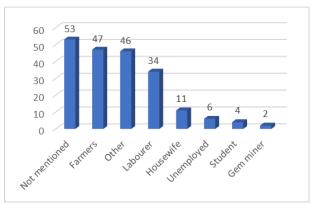
This is the second article of two in a series on "Understanding the factors that may contribute to deaths from leptospirosis in Sri Lanka: Analysis of the 2023 mortality data"


The following findings are summarized from the data in the special investigation forms completed by the Public Health Inspectors (PHI) after the field investigation of notified leptospirosis deaths. The PHI obtains the information from the relatives or caregivers of the deceased and medical records, if available. Therefore, the findings should be interpreted with caution as there may be discrepancies in the history regarding the illness given by the caregiver/ relatives.

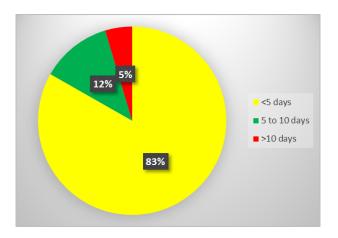
Distribution of leptospirosis deaths in 2023 by age and sex

The majority of deaths were among males (n=161; 79.1%) and primarily in the 51- 60-year age category (n=51; 25%). The demographic pattern indicates a notable impact on the country's workforce. Implementing notification and preventive measures tailored to these groups would be essential for effectively managing the situation and mitigating further risks.

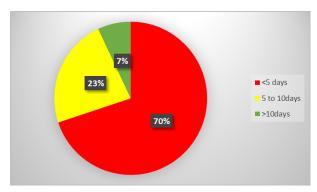
District-wise distribution of leptospirosis deaths in 2023



The district-wise distribution of leptospirosis deaths showed that Kurunagala district has recorded 29 deaths (mainly Polpithigama and Ganewaththa MOH area). Similarly, in the Galle district, the majority of deaths, totalling 28, were concentrated in Baddegama and Balapitiya MOH area. Additionally, Matara district, reported 23 deaths, indicating a significant concentration of fatalities in the Morawaka MOH area.


Contents	Page
 Understanding the factors that may contribute to deaths from leptospirosis in Sri Lanka: Analysis of the 2023 mortality data II 	1
 Summary of selected notifiable diseases reported (13th - 19th April 2024) Surveillance of vaccine preventable diseases & AFP (13th - 19th April 2024) 	3 4

Distribution of leptospirosis deaths in 2023 by occupation


Overall, the high incidence of leptospirosis deaths among farmers(n=47) and labourers (n=34) underscores the need for targeted interventions to raise awareness, improve access to healthcare, implement preventive measures, and address socioeconomic disparities to effectively mitigate the burden of the disease within these vulnerable populations. However, with the highest number being recorded as "not mentioned," it is important to reinforce the responsibility of the public health team to accurately record data in the special investigation form, including occupation. Supervising officers should oversee and verify the data, to identify trends in demographics, allowing for targeted actions.

Distribution of the number of days from onset of symptoms to admission to the hospital of the leptospirosis patients who died in 2023

The observation that the majority of individuals with leptospirosis were admitted to the hospital within 5 days of symptom onset underscores the importance of a comprehensive analysis to understand the root causes behind deaths among those who were admitted early. Delayed presentation to healthcare facilities due to distance to healthcare centres, transportation issues, or reluctance to seek medical help promptly may impact the effectiveness of treatment. Addressing these root causes through improved healthcare access, enhanced diagnostic capabilities, increased awareness and education, and targeted preventive measures is crucial for reducing leptospirosis-related mortality, particularly among those admitted early during the disease.

Number of days from admission to death of leptospirosis patients who died in 2023

The high mortality rate of leptospirosis patients within the first 5 days of admission in 2023 underscores significant challenges in timely intervention and effective management. Root causes contributing to this phenomenon include the rapid progression of the disease, delayed presentation to healthcare, late diagnosis, underlying health conditions, and treatment challenges. Addressing these issues necessitates a multifaceted approach, involving improving public awareness, enhancing diagnostic capabilities, ensuring timely access to healthcare, and optimizing treatment protocols.

Institutional death reviews are important to identify the 3 delays in patient care and other administrative issues that may impact patient management. Out of the 203 deaths, only two people had taken doxycycline as prophylaxis and one of them had taken only one dose. This highlights the crucial need for proper preventive measures including prophylaxis. If the 47 farmers had taken doxycycline prophylaxis for leptospirosis, those deaths could have been prevented. Strengthening healthcare systems, especially prevention and control activities and improving surveillance, particularly in endemic regions, is paramount to reducing mortality rates associated with leptospirosis.

Compiled by:

Dr.W.D.J K.Amarasena Senior Registrar in Community Medicine, Epidemiology Unit

Dr.Thushani Dabrera Consultant Community Physician, Epidemiology Unit

References:

- [1] F. Costa *et al.*, "Global Morbidity and Mortality of Leptospirosis: A Systematic Review," *PLoS Negl. Trop. Dis.*, vol. 9, no. 9, pp. 0–1, 2015, doi: 10.1371/journal.pntd.0003898.
- [2] N. & I. M. Epidemiology Unit Ministry of Health, "WEEKLY EPIDEMIOLOGICAL REPORT Vol. 50 No. 19," no. May, pp. 1–4, 2013, [Online]. Available: http://www.epid.gov.lk

Table 1: Selected notifiable diseases reported by Medical Officers of Health 13th - 19th Apr 2024 (16th Week)

rable 1: Selected		leu	notifiable diseas			ases reported by Medic				cai	Officers of Health				13"-19"		··· A	' Apr 2024		יא יייסוי) י		veek)							
용	*5	100	100	100	100	100	100	100	100	100	93	100	100	100	100	100	100	100	96	100	100	100	100	100	100	100	100	66	
WRCD	*_	92	98	87	100	92	92	100	100	94	100	100	100	100	83	100	98	100	82	24	100	100	100	73	90	82	1	91	
sisolr	В	673	377	201	213	41	96	144	38	37	9/	7	23	∞	7	41	77	24	178	62	88	32	72	31	73	104	44	2764	
Tuberculosis	∢	20	17	7	_	_	2	က	0	က	4	0	~	_	0	က	က	9	15	~	7	2	9	0	0	4	~	148	
Leishmania-	В	0	∞	0	17	88	0	က	168	35	0	0	~	5	2	~	9	∞	187	0	286	164	10	81	69	12	0	1164	
Leish	⋖	0	0	0	_	7	0	0	2	4	0	0	0	0	_	0	0	0	19	_	21	0	0	4	9	0	0	75	
ngitis	В	12	37	25	5	2	က	29	12	38	9	4	3	9	0	20	19	က	89	22	20	12	7	43	47	25	9	502	
Meningitis	A	0	2	0	0	0	0	~	0	0	0	~	0	0	0	~	0	0	12	2	7	0	_	7	0	7	0	29	
Chickenpox	В	162	106	229	194	33	77	229	114	121	106	4	4	14	2	45	52	23	163	54	78	65	110	38	115	285	75	2498	
Chick	⋖	4	7	00	2	2	∞	9	10	7	9	0	0	0	0	7	_	~	12	4	7	4	12	~	10	30	9	168	
H. Rabiies	В	0	0	0	0	0	0	_	0	0	_	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	9	
Ξ.	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Viral Hep.	В	4	_	5	4	4	3	5	2	2	3	0	0	4	0	00	3	0	2	_	9	2	00	12	12	2	_	97	
Vira	⋖	0 9	2 0	5 0	0	1 0	0	0 2	0 2	0 6	0	7 0	0 9	2 0	0	1 2	1 0	0	5 0	5 1	0	1 0	1	3 5	1	0 8	0	2 10	
Typhus F.	ω.	0	0	0	1 10	0	3 19	2 47	1 17	-	6 351	0	0	0	0 10	0	0	0	0 15	0	1 23	0	1 10	2 16	0 10	0	0	8 592	
	∢	149	215	248	92	42	75	282	244	123	12	13	16	54	20	26	109	92	243	123	199	121	224	416	278	228	37	14	
Leptospirosis	a a	7 14	14 2	12 24	4	_	2	7 28	6 24	6 12	0	· ·	0	0	3	2	1 1	о°	5 24	2 13	8	4	14 22	14 4	19 21	10 23	т т	51 4014	
D	В	2	<u></u>	2	က	∞	133	21	33	4	16	_	0	7	7	12	œ	_	339	0	4	2	19	, 89	2	4	7	703 15	
F. Poisonin		_	0	0	0	0	6	0	0	0	←	0	0	2	0	0	0	0	0 3	0	-	0	က	0	_	_	0	16 7	
	В	25	က	20	4	~	က	2	က	7	4	2	<u></u>	0	0	4	0	2	_	က	0	_	0	_	က	2	0	93 1	
En. Fever	<	2	0	4	0	0	0	0	0	0	-	0	0	0	0	0	0	~	_	0	0	0	0	0	<u></u>	0	0	10	
alitis	В	4	9	~	0	0	က	∞	_	က	~	0	0	0	0	9	~	0	12	~	7	0	4	~	က	4	0	61	
Encephalitis	⋖	_	7	0	0	0	0	_	0	0	0	0	0	0	0	_	0	0	_	0	0	0	_	0	0	0	0	7	
Dysentery E	В	7	∞	12	7	~	30	17	0	က	26	2	0	0	4	53	4	ω	13	~	4	10	10	5	34	က	6	293	
Dyse	⋖	7	_	~	_	0	7	0	~	~	~	က	0	0	0	2	0	0	2	0	0	~	_	0	4	0	0	23	
Dengue Fever	В	4326	1880	1245	1681	329	180	1030	460	374	4886	268	173	125	176	1029	142	422	1212	620	474	185	493	372	940	926	502	24480	
Dengu	<	111	89	37	73	16	7	19	32	က	34	4	~	0	2	7	4	17	21	19	4	က	6	10	44	23	4	929	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	Nuwara Eliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmunai	SRILANKA	

Source: Weekly Returns of Communicable Diseases (esurvillance.epid.gov.Ik). T=Timeliness refers to returns received on or before 19th April, 2024 Total number of reporting units 358 Number of reporting units data provided for the current week. B = Cumulative cases for the year.

Table 2: Vaccine-Preventable Diseases & AFP

13th - 19th Apr 2024 (16th Week)

Disease	No. of Cases by Province									Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	W	С	S	N	Е	NW	NC	U	Sab	week in 2024	week in 2023	2024	2023	in 2024 & 2023	
AFP*	00	00	00	00	00	00	00	00	00	00	01	28	25	12 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	01	00	02	02	02	01	00	08	05	88	73	20.5 %	
Measles	01	00	04	02	02	00	00	00	00	09	00	201	00	0 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	01	01	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	02	01	100 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Encephalitis	00	00	00	00	00	00	00	00	00	00	00	01	02	-50 %	
Whooping Cough	01	00	00	00	00	00	00	00	00	01	00	03	03	0 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Number of Malaria Cases Up to End of January 2024,

02

All are Imported!!!

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10