

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit

Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 51 No. 08

17th - 23rd Feb 2024

Road Traffic Accidents in Sri Lanka

This is the third article of three in a series on "RTA in Sri Lanka"

Risk Factors for Road Traffic Accidents

Safe system approach:

aims to ensure a safe transport system for all road users along with taking account of people's vulnerability to serious injuries and be able to accommodate human error to some extent. This approach involves safe roads and roadsides, safe speeds, safe vehicles and safe road users which all must be adequately addressed to eliminate possibility of fatal crashes and serious injuries.

Speeding:

An increase in average speed is directly related to likelihood of a crash occurring and severity of the consequences of the

Driving under the influence of alcohol or other psychoactive substances:

increases the risk of a crash that results in death or serious injuries.

Non-use of motorcycle helmets, seat-belts and child restraints:

Correct helmet use, wearing a seat belt and using child restraints can reduce the risk of death in a crash considerably.

Distracted driving:

The distraction caused by mobile phones especially, is a growing concern for road safety. Hands free phones are not much safer than hand-held phone sets while texting also considerably increases the risk of a crash.

Unsafe road infrastructure:

The design of roads can have a considerable impact on their safety. Ideally, adequate facilities should be considered for pedestrians, cyclists and motorcyclists as well. Measures such as cycling lanes, safe crossing points, and footpaths can be extremely useful towards reducing RTA.

Unsafe vehicles:

Several regulations on vehicular safety if applied to production standards can save many lives. Examples include front and side impact regulations, electronic stability control, ensuring fitting of airbags and seat-

Inadequate post-crash care:

Delays in detection and provision of care for those involved in RTAs can increase severity of injuries. Improving post-crash care requires timely access to prehospital care, and improving quality of both prehospital and hospital care.

Inadequate law enforcement of traffic laws:

If traffic laws are not implemented or are perceived as not being enforced, the expected reduction in road traffic injuries would not take place as it would have little chance of influencing behavior.

Prevention

Recommendations of the study by Kodithuwakku (2022) included increasing rates of fines for those who do not adhere to road rules, programs with emphasis on increasing driver's vigilance regarding pedestrians and danger of not using signals, strict adherence to lane driving, education of pedestrians to utilize sidewalks, safe road crossing procedures and watchfulness when crossing roads. In addition, formation of pedestrian bridges and pavement tunnels as alternatives to prevent pedestrian accidents, using stop signs at intersections between main and sub roads, and establishing speed reduction

Contents	Page
1. Road Traffic Accidents in Sri Lanka - Part III	1
2. Summary of selected notifiable diseases reported ($10^{th} - 16^{th}$ February 202	24) 3
3. Surveillance of vaccine preventable diseases & AFP (10th - 16th February	2024) 4

methods to ensure pedestrian safety. The National Council for Road Safety has also implemented several road safety programmes and plan of setting up road safety clubs at schools. In addition, the Department of Motor Traffic (DMT) has also prepared questionnaires for candidates sitting for the Driving License exam in such a way that each candidate will be answering different question types instead of answering the same question paper. Plan to introduce a credit point system for driving licenses with deduction of points for traffic offences is also in implementation.

Overall, government as a whole, needs to take action to address road safety. This would require involvement of several stakeholders from multiple sectors such as the transport ministry, police force, health, education including the private sector and civil society organizations. Planning effective interventions such as designing of safer infrastructure, incorporating road safety features, improving vehicle safety features & effective post-crash care for victims of road traffic crashes and ensuring adherence and enforcement of laws pertaining to road safety.

Compiled by:

Dr D. A. Nathaniel Registrar in MD Community Medicine Epidemiology Unit

References:

- https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
- Global status report on road safety 2023. Geneva: World Health Organization; 2023. License: CC BY-NC-SA 3.0 IGO.
- 3. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
- 4. https://www.transport.gov.lk/web/index.php?
 https://www.transport.gov.lk/web/index.php?
 https://www.transport.gov.lk/web/index.php?
 https://www.transport.gov.lk/web/index.php?
 op-tion=com_content&view=article&id=29&Itemid=149&lang=en
- Directorate of Non-Communicable Diseases. (2018). Annual Acute NCD Report. Ministry of Health, Sri Lanka.
- 6. Kodithuwakku, D.S. & Peiris, T.S.G. (2022). Factors Contributing to the Road Traffic Accidents in Sri Lanka. *SJHS* (2021) Vol (2) Issue (1), pp 109-122.
- 7. Department of National Planning. (2017). Public Investment Programme: 2017-2020. Ministry of National Policies and Economic Affairs Sri Lanka. http://www.npd.gov.lk/images/publications/english_pip_book.pdf.

Table 1: Water Quality Surveillance Number of microbiological water samples January 2024												
District	MOH areas	No: Expected *	No: Received									
Colombo	15	90	0									
Gampaha	15	90	NR									
Kalutara	12	72	66									
Kalutara NIHS	2	12	25									
Kandy	23	138	NR									
Matale	13	78	NR									
Nuwara Eliya	13	78	NR									
Galle	20	120	NR									
Matara	17	102	96									
Hambantota	12	72	28									
Jaffna	12	72	56									
Kilinochchi	4	24	4									
Mannar	5	30	NR									
Vavuniya	4	24	53									
Mullatvu	5	30	0									
Batticaloa	14	84	0									
Ampara	7	42	NR									
Trincomalee	11	66	NR									
Kurunegala	29	174	NR									
Puttalam	13	78	NR									
Anuradhapura	19	114	NR									
Polonnaruwa	7	42	1									
Badulla	16	96	NR									
Moneragala	11	66	155									
Rathnapura	18	108	NR									
Kegalle	11	66	NR									
Kalmunai	13	78	NR									

* No of samples expected (6 / MOH area / Month)
NR = Return not received

Table 1: Selected notifiable diseases reported by Medical Officers of Health 10th-16th Feb 2024 (07th Week)

	е 1:										P 0		,·						neaith 10"-10" reb 2024 (0 <i>1</i>		(U/W Week)								
	**	100	100	100	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	66	
WRCD	* —	92	93	87	100	100	100	100	100	94	86	100	100	75	100	100	86	100	90	82	96	100	94	82	92	100	100	94	
		0	က	0	7	37	0	က	9/	13	0	0	_	0	_	_	က	4	0	80	7	124	70	7	23	7	10	466	
Leishmania-	В	0	0	0	0	10	0	0	25	4	0	0	0	0	0	0	0	0	0	<u></u>	0	4	10	0	_	0	_	74	
	⋖	9	21	12	7	~	7	4	7	31	က	7	_	4	0	10	12	က	7	48	7	12	9	2	27	17	12	267	
Meningitis	В	_	_	_	0	0	0	_	0	က	0	0	0	0	0	2	က	_	0	9	<u></u>	0	_	0	_	0	2	24 2	
	⋖	54	34	88		_∞	26	<u></u>	39	42	54	_	4	2	2	7	29	9	တ	64	30	26	30	53	œ	48		က	
Chickenpox	В				101		2	7	က							_			_		က				_		104	97	
S C D	∢	13	5	14	9	2	~	13	7	2	10	0	_	_	0	_	0	_	က		7	က	က	2	5	00	16	141	
H. Kabi.	Ф	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	_	0	7	
11. No	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
eb.	В	က		4	_	_	_	2	_	0	2	0	0	က	0	က	က	0	0	_	0	4	_	2	9	4	က	49	
ү. пер.	4	3	0	_	0	~	0	0	0	0	2	0	0	2	0	0	0	0	0	0	0	2	_	0	2	~	0	15	
2	В	0	0	0	2	0	9	21	00	2	212	လ	2	_	5	_	_	2	_	7	3	6	_	2	7	2	4	315	
Spillas	4	0	0	0	0	0	0	_	2	0	28	_	0	0	2	0	0	0	0	_	0	_	0	0	5	0	_	42	
2515		48	70	82	42	30	52	154	166	65		9	_	36	38	16	77	28	27	159	98	121	79	123	281	281	85	2216	
ilds01	Ω	က	1	7	0	2	7	2	17	9	က	7	←	2	2	က	∞	4	7	8	2	13	13	7	12	36	က	202	
oison- Leptospirosis	⋖	8	0	0	က	4	2	~	0	2	က	_	0	0	2	0	_	0	0		0	<u></u>		4	0	2	0		
Polson	В							~												335				·				376	
ם מסת	⋖	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	
ن د	В	~	2	က	0	~	0	_	0	0	0	0	_	0	0	_	0	_	0	0	0	0	0	0	0	0	0	7	
	⋖	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	
onall	В	~	4	0	0	0	2	9	0	2	_	0	0	0	0	~	_	0	0	4	~	0	0	~	0	0	2	26	
Encepnall	A	0	0	0	0	0	0	~	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0	0	7	
itery	В	4	4	7	5	~	13	10	2	2	18	0	0	0	2	24	∞	က	7	2	0	_	5	9	3	14	3	147	
Dysentery	4	0	0	_	0	0	0	0	_	0	4	0	0	0	0	2	2	0	_	_	0	_	0	0	0	0	0	13	
Je.		2841	1150	693	1156	233	127	722	256	218	4001	212	153	103	146	685	85	268	365	868	476	254	104	412	233	499	618	16878	
Dengue rever	Ω	286	155	81	98	30	6	99	4	23	292	22	7	က	∞	61	19	33	26	102	29	41	12	15	4	48	26		
	⋖	2	7								2									=		Ì				Ì		1533	
		0	าล	es.			Eliya		ntota			chi		'a	P.	oa		nalee	gala	E	hapura	aruwa		gala	ıra		ai	ξ Σ	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	Nuwara Eliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Frincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmunai	SRILANKA	

Source: Weekly Returns of Communicable Diseases (esurvillance.epid.gov.Ik). T=Timeliness refers to returns received on or before 16th Feb, 2024 Total number of reporting units 358 Number of reporting units data provided for the current week. B = Cumulative cases for the year.

Table 2: Vaccine-Preventable Diseases & AFP

10th-16th Feb 2024 (07th Week)

Disease	No. of Cases by Province								Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	W	С	S	N	Е	NW	NC	U	Sab	week in 2024	week in 2023	2024	2023	in 2024 & 2023
AFP*	00	01	00	00	00	00	00	00	00	01	00	11	10	10 %
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Mumps	01	00	01	00	02	01	02	00	00	07	05	37	25	48 %
Measles	00	00	01	00	01	00	00	00	00	02	00	111	00	0 %
Rubella	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	01	-100 %
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Japanese Encephalitis	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	01	01	0 %
Tuberculosis	50	17	10	07	20	07	07	13	06	147	198	1196	1095	9.2%

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10