

RI LANKA 202

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit

Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 50 No. 30

22nd- 28th July 2023

Vaccine Clinical Trials- Phase 1, 11, 111

Effective vaccination against certain infectious diseases has helped to protect human lives and improve the quality of life of many. Vaccine development usually takes 10-15 years of laboratory research. During the typical vaccine development timeline each clinical trial phase follows completion of the prior phase. However, during a Public Health Emergency of International Concern (PHEIC), the process of vaccine development is accelerated. During these instances, some clinical trial phases are combined. E.g., SARS-CoV-2 is a coronavirus that shared similarities with SARS-CoV-1 and MERS-CoV, hence prior work on SARS-1and MERS vaccines reduced the time spent on pre-clinical assessment of COVID-19 and the target antigen was identified quickly.

Although, during typical vaccine development manufacturing capacity is scaled up after phase 3 trial and regulatory approval, during accelerated timeline in a pandemic, manufacturing capacity is scaled up during the clinical trial, but at financial risk.

Pre-clinical Trials

Vaccines must go through several clinical trials before they can be licensed to be used in humans. Before a vaccine is tested on people, researchers study its ability to produce an immune response in small animals, such as rats, mice, hamsters, etc. in a laboratory setting. During this phase, researchers may make adjustments to the vaccine to ensure its safety levels and to make it more effective. The effectiveness of a vaccine is the extent to which the vaccine protects people against infection, symptomatic illness, hospitalization, and death.

If the vaccine shows promising results at this stage, it moves forward to the next stage or clinical trials for testing in humans.

Phase 1 Clinical Trials

For phase 1 clinical trials, typically dozens of participants (20-100) are recruited. In this phase, the vaccine dosage and the safety levels are looked into. This includes learning about side effects and studying how well the vaccine works to cause an immune reaction. Phase 1a will trial the vaccine on healthy adults while type 1b will test the vaccine in a more 'relevant' target group. However, different strategies are used when dealing with high-risk target groups. E.g., Infant vaccines are tested on older children before descending to infancy.

During PHEIC, phase 1 trials are completed within two to three months, allowing for two doses of a vaccine two to three weeks apart.

Phase 2 Clinical trials

In phase 2 clinical trials hundreds of participants (100-300) are recruited. These participants should have characteristics (such as age and physical health) similar to the intended recipients of the vaccine. These participants can preferably be recruited from diverse backgrounds to ensure fair representation across different populations.

The trial is designed to generate additional information on the safety of the vaccine and more information on how the vaccine work to cause an immune response (immunogenicity) of the vaccine against the artificial infection and the disease. The percentage reduction of infection and disease in the vaccinated group compared to the un-vaccinated group will be compared. There are many ways that a researcher can conduct this phase of the trial, but the plan normally involves assigning the participants to different treatment groups. Normally, there is a control group which receives either the current standard care or a 'placebo' pill, which is a sug-

This phase will also be used to test the harmonized delivery of the vaccine with the existing immunization schedule. Furthermore, the compatibility of the vaccine with concomitant vaccines (e.g., EPI vaccines) will be ensured during this phase.

ar pill or harmless injection that doesn't contain

Nevertheless, harmonization with the existing immunization schedule is not required when the

Contents	Page
1. qqq	1
2. Summary of selected notifiable diseases reported $(15^{th} - 21^{st} \text{ July } 2023)$	3
3. Surveillance of vaccine preventable diseases & AFP (15th – 21st July 2023)	4

the treatment.

vaccine is developed for a public health emergency of international concern (PHEIC). Further, during these instances, it is important to test for the practicality of conducting mass vaccination campaigns e.g.: modest cold chain requirements, spacing between doses, and multi-dose vials. During these instances phase 2 trials are completed in three to four months, allowing for longer follow-ups to better assess safety and immunogenicity. This timeline is further shortened when phases 1 and 2 are combined. E.g., In many Covid-19 vaccine clinical trials, phase 1 and phase 2 trials were combined to speed up the process.

Phase 2b trials - Volunteer Challenge Studies

In volunteer challenge studies, a group of volunteers are vaccinated with the vaccine following which, the respective virus is being inoculated into the vaccinated person's body. This can be used as an early measure of the efficacy of the candidate vaccines. Such trials may subtract many months from the licensing process, making the vaccines available to the public more quickly.

Human challenge studies have been useful during the introduction of the cholera vaccine, Typhoid vaccine, Shigella vaccine and influenza vaccines.

Phase 3 Clinical Trials

This phase of the trial involves a much larger group of volunteers (300-3000) and primarily focuses on determining whether the vaccine would be safe and effective for a wide variety of people. These studies are often done in several places across the country at the same time. In phase 3 trials too, there is a control group who receives the standard treatment or a place-bo. These studies tend to last longer than phase 1 or 2 studies. After the completion of phase 3 trials, the treatment group will be compared with the control group to determine the effectiveness and safety of the vaccine. Assessing short and long-term goals are also a major goal of phase 3 clinical trials.

Regulatory Approval Process

In situations where adequate scientific evidence can be generated to believe that the vaccine is safe and effective to prevent disease, the FDA will authorize its use through an Emergency Use Authorization (EAU) even if the definitive proof of the efficacy of the vaccine is not known, especially for diseases that cause high mortality.

Reference

https://www.cdc.gov/vaccines/basics/test-approve.html https://www.vaccinedevelopment.org.uk/ct-overview.html https://ncirs.org.au/phases-clinical trials#:~:text=lt% 20takes%20at%20least%201,of%20the% 20vaccine%20are%20tested.

Human challenge trials for vaccine development: regula-

tory considerations, Annex 10, TRS No 1004 https://coronavirus.jhu.edu/vaccines/timeline

Compiled by:

Dr. Dilini Mataraarachchi Acting Consultant Epidemiology Unit

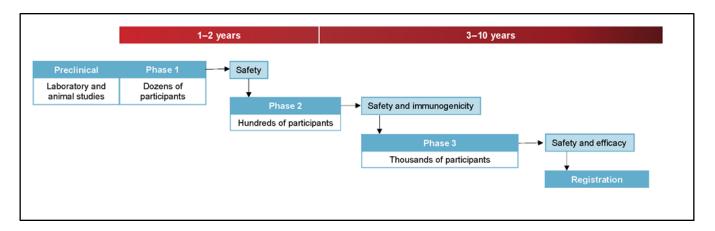


Figure 1: Conventional pathway of vaccine development (NCIRS- https://ncirs.org.au/phases-clinical-trials)

Table 1: Selected notifiable diseases reported by Medical Officers of Health 15th-21st July 2023 (29th Week)

Table 1: Selected notifiable diseases reported by Medical Officers of Health 15th-21st July 2023 (29th Week)														۲)															
D	*5	100	100	100	100	100	100	100	100	100	93	66	100	100	100	100	65	66	100	100	86	97	100	100	100	100	100	66	-
WRCD	*_	53	m	24	87	24	61	37	76	54	64	22	39	11	24	29	œ	5 6	24	22	25	32	65	27	32	30	41	38	
Leishmania-	В	2	53	1	22	201	П	2	396	115	2	0	0	10	9	П	7	П	317	16	339	259	28	119	124	27	0	2023	3
Leish	⋖	0	0	0	0	∞	0	0	13	4	0	0	0	н	0	0	0	0	18	0	œ	4	7	Ŋ	14	7	0	79	
Meningitis	В	28	25	64	18	4	∞	15	16	16	6	П	7	10	0	25	22	22	106	40	35	15	32	49	111	46	22	779	:
Meni	⋖	₩	2	9	0	0	0	н	0	П	0	н	0	7	0	0	Н	0	2	က	П	0	0	7	П	က	m	41	
Chickenpox	В	180	175	294	167	33	87	219	100	175	126	13	1	19	12	53	27	41	336	81	163	26	115	20	119	275	20	2967	
Chic	⋖	∞	2	11	2	П	m	2	4	m	9	0	0	0	0	4	П	က	16	Н	7	က	2	0	7	12	m	11	
an	В	0	0	Н		0	0	Н	0	7	П	0	0	0	0	Н	0	0	2	0	0	0	0	Н	7	0	0	12	
Human	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	В	m	11	2	m	3	4	П	8	3	2	0	0	1	1	2	1	0	6	П	3	12	89	17	13	4	0	178	
Viral	⋖	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
<u>s</u>	В	0	7	1	41	12	49	33	24	23	483	7	2	8	2	Н	1	15	6	8	53	2	35	32	21	56	1	911	
Typhus	⋖	0	0	0	0	0	0	က	1	က	2	1	0	0	0	0	0	П	0	0	1	0	4	7	0	2	0	23	
Leptospirosis	В	204	353	535	183	115	79	594	216	384	6	7	30	28	53	69	70	24	243	45	525	136	230	407	802	472	36	5553	
Lepto	4	6	12	10	15	2	m	23	6	7	-	0	0	П	0	2	0	0	2	က	2	2	6	4	44	20	1	179	
Food Poi-	В	7	3	9	15	10	41	21	8	12	17	16	0	0	12	18	1	64	9	Н	2	10	32	0	15	11	0	328	
F000	⋖	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	0	0	П	1	0	10	
Enteric Fever	В	П	33	0	7	1	3	2	1	1	6	0	1	0	c	2	0	0	0	П	1	0	0	0	2	2	0	46	
Enteri	<	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	В	10	13	7	0	7	3	12	m	∞	7	0	0	П	0	7	П	Н	∞	7	0	2	2	9	13	7	10	116	:
Encephalit	<	0	0	0	0	2	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	Ŋ	:
Dysentery	В	_∞	15	14	27	7	06	34	7	19	22	7	9	2	10	145	7	16	31	6	_∞	12	56	15	32	17	20	662	
Dyse	⋖	-	m	0	0	0	4	0	0	0	1	0	0	0	-	n	0	1	0	-	2	-	0	0	m	1	9	28	i
Fever	В	10026	10346	3396	4171	994	164	1664	1109	1257	1728	78	74	118	106	2009	131	1930	2229	2707	594	462	770	433	1539	2145	1576	51756	
Dengue Fever	⋖	335	238	84	233	28	7	83	78	74	27	2	1	2	7	39	2	13	29	27	13	12	40	12	48	84	19	1545	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Source: Weekly Retums of Communicable Diseases (esurvillance.epid.gov.Ik). T=Timeliness refers to returns received on or before 21st July, 2023 Total number of reporting units 358 Number of reporting units data provided for the current week. B = Cumulative cases for the year.

Table 2: Vaccine-Preventable Diseases & AFP

15th-21st July 2023 (29th Week)

Disease	No.	of Ca	ases	by P	rovin	ice		Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date			
	W	С	S	N	Е	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022	
AFP*	00	00	00	00	00	00	00	00	00	00	00	50	44	13.6 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	02	00	01	01	00	01	00	05	00	126	35	260 %	
Measles	21	01	00	02	00	01	00	00	01	26	01	88	14	528.5 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	06	05	20 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Encephalitis	00	00	00	00	00	00	00	00	00	00	00	02	07	- 71.4 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	05	01	400 %	
Tuberculosis	77	42	15	21	12	00	05	07	27	206	120	5249	3254	61.3 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Number of Malaria Cases Up to End of July 2023,

10

All are Imported!!!

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10