

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health

Ministry of Health231, de Saram Place, Colombo 01000, Sri LankaTele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lkEpidemiologist: +94 11 2681548, E mail: chepid@sltnet.lkWeb: http://www.epid.gov.lk

Vol. 50 No. 38

16th- 22nd Sep

Assessment of Vaccine Herd Protection: Lessons learned from vaccine trials Part l

This is the first article of a series of 3 articles on the "Assessment of Vaccine Herd Protection: Lessons learned from vaccine trials". Part I'.

The following series of articles are based on the concepts introduced in the previous WERs Vol.50 No. 36 & 37 and on 'Assessment of Vaccine Herd Protection'

To recap, vaccines provide direct protection to vaccine recipients by activating an immune response against targeted infections. This protection occurs regardless of the level of vaccination of the surrounding population. When vaccines are administered in a community, there will be extension of the vaccine protection beyond the vaccine recipients to unvaccinated persons, as well as greater protection among the vaccinated.¹

Vaccine population effects can either result from vaccine herd immunity or vaccine herd protection, which are to be considered as two separate entities, though they are often used interchangeably.²

Vaccine herd protection is traditionally inferred from observations of disease trends after inclusion of a vaccine in national immunization schedules. However, instead of waiting for such impact assessments post widescale vaccine deployment, it would be more prudent to conduct earlier stage evaluation of vaccine herd protection to assist in forming policy deci-

sions about potential vaccine introduction. Herd protection assessments using the cholera and typhoid vaccine studies have revealed the importance of vaccination as an additional tool of prevention and control, along with the more traditional control measures such as prompt case management and improved access to safe water, sanitation and hygiene. Herd protection augments the impact of cholera and typhoid fever vaccinations and prevents the need to vaccinate the entire population to control transmission. Furthermore, the overwhelming impact of uncontrolled cholera outbreaks and typhoid fever, coupled with the rapid worldwide surge in antimicrobial drug resistance, shows us the importance and use of vaccine herd protection against such diseases.¹

Components of Vaccine Herd Protection

Vaccine herd protection is a vaccine preventive impact in a population above that expected from direct vaccine protection and level of vaccine coverage. Components of **vaccine herd protection** include¹:

INDIRECT Protection What is conferred to the unvaccinated in the population through decreased exposure to the pathogen
TOTAL Protection Enhanced defense of the vaccinated due to their proximity to other vaccinated persons
OVERALL Protection of the entire population, irrespective of the vaccination status of its individual persons, due to the combination of indirect and total effects.

V	accine Herd Immunity	Vaccine Herd Protection								
Pr fro liv th	otection of nonvaccinated persons resulting om their exposure and immune response to re vaccine organisms shed by vaccinees in eir community. E.g. oral polio vaccine.	This results from a decline in transmission of within a community when a sufficient portion ulation has been immunized.	of a pathogen in of the pop-							
O: sh in vi	aly applies to live vaccines that induce edding & does not depend on whether the fection is spread from person to person, or a another route.	Can be induced by live or non-live vaccines but occurs only for infections that are transmitted from person to person (directly or indirectly). *Cocooning – strategy of vaccinating those in close con- tact with immunocompromised persons or infants too young to receive or mount a vaccine response, focusing on especially vulnerable persons ³								
Co	ontents		Page							
1.	Assessment of Vaccine Herd Protection Les	ssons learned from vaccine trials Part I	1							
2.	2. Summary of selected notifiable diseases reported $(09^{th} - 15^{th}$ September 2023) 3									
3.	Surveillance of vaccine preventable diseases & AFP $(09^{th} - 15^{th}$ September 2023) 4									

SRI LANKA 2023

WER Sri Lanka - Vol. 50 No . 38

*Direct immunity – refers to protection mediated through an immune response to the vaccine. However, individuals who are immunologically naïve to the disease of interest and shielded by indirect protection alone, remain FULLY susceptible to the disease, should they be exposed to the pathogen of interest.

Influencing Factors & Implications of Vaccine Herd Protection

Level of **vaccine herd protection** in a community can be *influenced* by several factors^{1,4}:

- Direct protection against symptomatic and asymptomatic disease conferred to vaccinees;
- Preexisting immunity of the population;
- Vaccine coverage;
- Extent of community mixing and mobility

This leads us to several implications of vaccine herd protection:

- Some vaccines may be cost effective only when impact of herd protection is considered e.g. inactivated oral cholera vaccines.⁵
- Demonstration of herd protection especially for vaccines that confer moderate individual protection, can determine whether the use of such vaccines in populations will be sufficient for disease control. Even if insufficient to achieve disease elimination in such instances, the reduction of infection risk in the population by lesser degree of herd protection may be a worthy public health goal.
- Herd protection can also shield those in whom immunization is not possible such as young children and the immunocompromised.
- When infection prevalence has considerably reduced, **vaccine herd protection** may prevent the emergence and spread of variants of some pathogens.
- On the negative side, vaccine herd protection can alter disease epidemiology such as shifting average age of infection to adulthood. This could be significant if clinical outcomes are more severe if occurring at an older age.
- Also, vaccine herd protection could exert selection pressure that results in serotype replacements which is an issue that is under observation in pneumococcal immunization programs.⁶
- *These are issues that need to be considered when deciding on widescale vaccine deployment.

The "free-rider" paradox – where persons living in a community with high vaccine coverage, who themselves refuse to be vaccinated due to vaccine hesitancy/refusal or antivaccination sentiments, may ironically benefit from herd protection.

Prepared by:

Dr Dhivya A Nathaniel Registrar in MD Community Medicine Epidemiology Unit

Adapted from the following Sources

- Clemens, J., Deen., J. (2021). Assessment of Vaccine Herd Protection: Lessons learned from Cholera and Typhoid vaccine trials. *The Journal of Infectious Diseases*, 224(S7): S764-9.
- Clemens, J., Shin, S., Ali, M. (2011). New approaches to the assessment of vaccine herd protection in clinical trials. *Lancet Infect Dis;* 11:482–7.
- Healy, C.M., Rench, M.A., Baker, C.J. (2011). Implementation of cocooning against pertussis in a high-risk population. *Clin Infect Dis*; 52:157–62.
- 4. Ali, M., Clemens, J. (2019). Assessing vaccine herd protection by killed whole-cell oral cholera vaccines using different study designs. *Front Public Health*;7: 211.

- Jeuland, M., Cook, J., Poulos, C., Clemens, J., Whittington, D.; DOMI Cholera Economics Study Group (2009). Cost-effectiveness of new-generation oral cholera vaccines: a multisite analysis. *Value Health*;12: 899–908.
- Løchen, A., Croucher, N.J., Anderson, R.M. (2020). Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. *Sci Rep;10*: 18977
- 7. Smith, P.G. (2010). Concepts of herd protection and immunity. *Procedia Vaccinol;2*: 134–9.
- Sur, D., Ochiai, R.L., Bhattacharya, S.K., et al. (2009). A cluster randomized effectiveness trial of Vi typhoid vaccine in India. N Engl J Med; 361: 335–44.
- 9. Hayes, R.J., Alexander, N.D., Bennett, S., Cousens, S.N. (2000). Design and analysis issues in cluster-randomized trials of interventions against infectious diseases. *Stat Methods Med Res;* 9: 95–116.
- 10.Ali, M., Emch, M., von Seidlein, L., et al. (2005). Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. *Lancet*; 366: 44–9.
- 11.Longini IM Jr., Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD. (2000). Controlling endemic cholera with oral vaccines. *PLoS Med*; 4:e336.
- 12.Khatib, A.M., Ali, M., von Seidlein, L., et al. (2012). Effectiveness of an oral cholera vaccine in Zanzibar: findings from a mass vaccination campaign and observational cohort study. *Lancet Infect Dis;12*: 837–44.

Table 1 : Water Quality Surveillance Number of microbiological water samples August 2023										
District	MOH areas	No: Expected *	No: Received							
Colombo	15	90	0							
Gampaha	15	90	NR							
Kalutara	12	72	74							
Kalutara NIHS	2	12	30							
Kandy	23	138	27							
Matale	13	78	0							
Nuwara Eliya	13	78	1							
Galle	20	120	103							
Matara	17	102	122							
Hambantota	12	72	NR							
Jaffna	12	72	155							
Kilinochchi	4	24	4							
Manner	5	30	0							
Vavuniya	4	24	23							
Mullatvu	5	30	33							
Batticaloa	14	84	0							
Ampara	7	42	NR							
Trincomalee	11	66	NR							
Kurunegala	29	174	NR							
Puttalam	13	78	0							
Anuradhapura	19	114	7							
Polonnaruwa	7	42	38							
Badulla	16	96	0							
Moneragala	11	66	10							
Rathnapura	18	108	NR							
Kegalle	11	66	28							
Kalmunai	13	78	6							

 $\mathbf{NR} = \text{Return not received}$

16th- 22nd Sep 2023

W	WER Sri Lanka - Vol. 50 No. 38 16 th - 22 nd Sep 2023																												
Tak	ole 1	Se	elec	ted	noti	fiab	le di	isea	ses	rep	orte	ed b	уM	edic	al C	Offic	ers	of H	leal	th	09 th	- 15	th S	ep 2	2023	3 (37	7 th V	Veek	()
	** C*	100	100	200	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	66	
WRCD	*	40	œ	63	89	28	63	38	32	59	99	34	51	18	25	65	10	30	29	28	30	36	67	30	37	33	50	42	
ania-	m	9	37	2	25	251	ო	с	496	149	2	0	-	10	7	~	7	5	424	19	479	341	35	145	140	34	0	2622	
Leishm	A	0	~	~	0	œ	~	0	24	Ø	0	0	~	0	0	0	~	с	12	0	27	16	~	2	0	0	0	106	
pitis	m	36	91	85	22	7	22	24	17	17	14	2	ω	12	2	31	43	28	169	58	43	17	39	68	129	70	34	1088	
Menin	A	~	co	2	0	2	~	~	~	~	0	0	0	0	0	ი	~	0	9	~	0	~	~	~	~	2	0	29	
xod		253	230	406	218	52	141	265	123	248	154	17	2	21	12	80	69	60	440	92	204	73	138	61	174	367	109	4009	
Chicken	A	14	12	10	12	2	4	9	9	œ	~	~	0	0	0	~	7	4	16	2	4	с	2	0	5	20	0	149	
Ē	В	0	0	~	2	0	0	~	0	0	2	0	0	0	0	~	0	0	2	0	2	0	0	~	2	0	0	16	
Huma	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	В	5	15	10	3	9	2	2	6	5	5	0	~	2	~	00	~	с С	10	~	4	12	80	23	16	5	0	232	
Viral	A	0	0	2	0	~	0	0	0	0	0	0	~	~	0	2	0	0	~	0	0	0	2	~	0	0	0	7	
S	в	0	Ø	2	49	14	61	64	67	30	501	7	5	8	9	~	2	15	16	00	30	9	51	36	27	37	~	1052	
Typhu	A	0	0	0	2	~	~	7	~	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	~	0	17	
oirosis	ω	259	459	685	237	126	119	756	249	442	12	8	35	30	36	78	114	64	321	71	242	151	282	453	978	567	48	6822	
Leptos	A	15	27	31	6	с	ო	15	ო	5	0	0	-	0	~	с	0	с	~	e	5	5	4	4	21	18	0	182	
Poi-	m	12	5	11	17	27	49	27	0	18	30	16	0	17	12	18	53	65	9	2	8	1	44	5	19	15	0	496	
Food	∎ ₹	~	0	2	0	13	~	с	0	~	2	0	0	∞	0	0	~	0	0	0	0	0	0	0	2	0	0	37	
c Fever	в	2	7	~	10	~	ო	5	~	-	12	-	-	0	4	5	~	~	~	~	~	~	0	0	2	2	0	64	
Enteri	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
phalit	В	-	14	2	~	ę	4	13	S	Ø	2	0	0	~	~	00	~	~	15	S	~	9	5	9	15	2	10	136	
Ence	∢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	-	
entery	В	14	19	20	33	4	133	39	0	22	83	0	9	10	13	163	7	22	38	30	13	14	33	21	39	22	65	881	
Dys	∢	~	0	0	4	2	2	0	0	~	0	~	0	~	0	~	0	~	0	2	~	~	~	0	~	0	0	20	
Fever	В	11520	11622	4057	5992	1324	232	2290	1258	1581	1983	86	81	149	117	2140	213	1994	2589	2877	668	523	940	608	1900	2649	1674	61067	
Dengue	A	60	81	57	125	20	2	56	11	33	34	0	2	ო	~	10	2	2	38	00	00	7	13	10	27	55	4	702	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Source: Weekly Returns of Communicable Diseases (esurvillance.epid.gov.Ik). T=Timeliness refers to returns received on or before 15th Sep, 2023 Total number of reporting units 358 Number of reporting units data provided for the current week: 358 C⁺⁺-Completeness + a = Cases reported during the current week. B = Cumulative cases for the year.

WER Sri Lanka - Vol. 50 No. 38

Table 2: Vaccine-Preventable Diseases & AFP

16th- 22nd Sep 2023

09th-15th Sep 2023 (37th Week)

Disease	No.	of Ca	ases	by P	rovir	ice		Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date		
	W	С	S	Ν	Е	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022
AFP*	00	01	02	00	01	00	01	00	00	05	02	71	57	24.5 %
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Mumps	00	00	01	00	00	00	00	02	00	03	00	174	63	176.1 %
Measles	28	04	02	01	01	00	05	00	02	43	01	421	17	2376.4 %
Rubella	01	00	00	00	00	00	00	00	00	01	00	05	00	0 %
CRS**	00	00	00	00	00	00	00	00	00	00	00	02	00	0 %
Tetanus	00	00	00	00	00	00	00	00	00	00	00	06	05	20 %
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Japanese Enceph- alitis	00	00	00	00	00	01	01	00	00	00	00	02	01	100 %
Whooping Cough	00	01	00	00	00	00	00	00	00	01	00	07	01	600 %
Tuberculosis	76	54	06	09	07	24	04	02	15	197	54	6574	4790	37.2%

Key to Table 1 & 2

Provinces:

: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Influenza Surveillance in Sentinel Hospitals - ILI & SARI												
N/ 41-	Human		Animal									
Month	No Total	No Positive	Infl A	Infl B	Pooled samples	Serum Samples	Positives					
August												
Source: Medical Research Institute & Veterinary Research Institute												

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10