

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health
 231, de Saram Place, Colombo 01000, Sri Lanka
 Tele: + 9411 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.Ik Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.Ik Web: http://www.epid.gov.lk

Vol. 50 No. 39
23 rd $-29^{\text {th }}$ Sep 2023

Assessment of Vaccine Herd Protection: Lessons learned from vaccine trials Part II

This is the second article of a series of 3 articles on the "Assessment of Vaccine Herd Protection: Lessons learned from vaccine trials".

Assessment of Vaccine Herd Protection using examples from Cholera \& Typhoid Vaccine Studies

Vaccine Herd Protection can be assessed either via:

- Cluster randomized trials
- Individually randomized trials \&
- Nonrandomized (observational) studies

While randomized trials are useful to avoid bias, non-randomized studies may be the only designs acceptable from an ethical, logistical and financial point of view and are also valuable to show the real-world impact of vaccination.

Cluster-Randomized Controlled Trials

Groups of individuals are randomized to receive the study vaccine (intervention clusters) or the control agent (control clusters), usually in a blinded manner, in Cluster-Randomized Control Trials (CRCT). Potential units of randomization are diverse and include workplaces, clinics, hospitals, schools, households etc. Further, some members of the clusters may choose to not receive the study vaccine or control agent. Indirect and total protection is as-
sessed by comparing sub-samples within the clusters.

*Participation bias is avoided by comparing those who receive the study vaccine with those who receive the control agent (all study participants) to assess total protection; while those who chose not to receive the study vaccine are compared with those who chose not to receive the control agent (all nonparticipants) to assess indirect protection. Thus, estimates are based on concurrent comparisons of groups that are similar by virtue of cluster randomization, hence strengthening the credibility of inferences made from CRCTs. (figure 1)

A CRCT was conducted in Kolkata, India, where slum-dwellers who were 2 years of age or older were randomly assigned to receive a single dose of either typhoid Vi polysaccharide vaccine (intervention) or inactivated hepatitis A vaccine (control agent), according to geographic clusters, with 40 clusters in each of the 2 study arms. ${ }^{8}$

Figure 1. Evaluation of vaccine protection in cluster-randomization trials [17].

Contents	Page	
1. Assessment of Vaccine Herd Protection Lessons learned from vaccine trials Part II	1	
2.	Summary of selected notifiable diseases reported $\left(16^{\text {th }}-22^{\text {nd }}\right.$ September 2023$)$	3
3.	Surveillance of vaccine preventable diseases \& AFP $\left(16^{\text {th }}-22^{\text {nd }}\right.$ September 2023$)$	4

WER Sri Lanka - Vol. 50 No . 39

Primary endpoint of this trial was to assess the total Vi vaccine protection against typhoid fever when the vaccine was given under realistic public health conditions. Rates of typhoid episodes during the ensuing 2 years of surveillance was compared across different groups to calculate the Indirect Vaccine Protection (IVP), Total Vaccine Protection (TVP) \& Overall Vaccine Protection (OVP). (table 1)

Results revealed (during 2 years of follow up), that TVP was 61% (95% CI: $41 \%-75 \%$), IVP was 44% (95% CI: $2 \%-69 \%$), and OVP was 57% ($95 \% \mathrm{CI}: 37 \%-71 \%$). Further, the Vi (typhoid vaccine) coverage was around 60%, making the population impact of OVP equivalent to that for a vaccine with 100% direct protection but not conferring herd protection.

In contrast, a similar clinical trial in Karachi, Pakistan with similar study design and follow up period was conducted, with the difference being that children between the ages of 2-16 years were only vaccinated. Results revealed TVP of 57% ($95 \% \mathrm{CI}$: 6\%-81\%) among children $5-16$ years of age but none among children between ages of 2-5 years of age. This study also did not detect a statistically significant IVP and OVP either. This difference in results between the studies carried out in Kolkata and Karachi have been ascribed to the noninclusion of adults as vaccine recipients in the Karachi site, potentially allowing continued transmission of typhoid fever in the intervention clusters.

These differences in outcome in 2 rather similar CRCTs shows the importance of study design. A) The disease of interest shouldn't ideally be transmitted to a great extent by groups not targeted for the vaccination within the chosen clusters, as this could have an effect on estimation of vaccine-induced herd effects. B) The intercluster migration of participants should be minimal, as this could change the vaccine recipient to nonvaccinee composition of the clusters and alter estimates of herd protection. C) Sample size needs to be considered carefully and adequate number of clusters need to be allocated to prevent imbalance in baseline factors between vaccinated and control clusters.

Several variations to CRCTs to assess vaccine herd protection have come up recently such as the double randomization design or fried-egg design. ${ }^{9}$

Adapted from the following Sources

1. Clemens, J., Deen., J. (2021). Assessment of Vaccine Herd Protection: Lessons learned from Cholera and Typhoid vaccine trials. The Journal of Infectious Diseases, 224(S7): S764-9.
2. Clemens, J., Shin, S., Ali, M. (2011). New approaches to the assessment of vaccine herd protection in clinical trials. Lancet Infect Dis; 11:482-7.
3. Healy, C.M., Rench, M.A., Baker, C.J. (2011). Implementation of cocooning against pertussis in a high-risk population. Clin Infect Dis; 52:157-62.
4. Ali, M., Clemens, J. (2019). Assessing vaccine herd protection by killed whole-cell oral cholera vaccines using different study designs. Front Public Health;7: 211.
5. Jeuland, M., Cook, J., Poulos, C., Clemens, J., Whittington, D.; DOMI Cholera Economics Study Group (2009). Costeffectiveness of new-generation oral cholera vaccines: a multisite analysis. Value Health;12: 899-908.
6. Løchen, A., Croucher, N.J., Anderson, R.M. (2020). Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci Rep;10: 18977
7. Smith, P.G. (2010). Concepts of herd protection and immunity. Procedia Vaccinol; 2: 134-9.
8. Sur, D., Ochiai, R.L., Bhattacharya, S.K., et al. (2009). A cluster randomized effectiveness trial of Vi typhoid vaccine in India. N Engl J Med; 361: 335-44.
9. Hayes, R.J., Alexander, N.D., Bennett, S., Cousens, S.N. (2000). Design and analysis issues in cluster-randomized trials of interventions against infectious diseases. Stat Methods Med Res; 9: 95 -116.
10.Ali, M., Emch, M., von Seidlein, L., et al. (2005). Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet; 366: 44-9.
11.Longini IM Jr., Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD. (2000). Controlling endemic cholera with oral vaccines. PLoS Med; 4:e336.
12.Khatib, A.M., Ali, M., von Seidlein, L., et al. (2012). Effectiveness of an oral cholera vaccine in Zanzibar: findings from a mass vaccination campaign and observational cohort study. Lancet Infect Dis;12: 837-44.

Table 1. Typhoid Vi Vaccine Effectiveness Estimates From a Cluster-Randomized Trial in Kolkata, India [26, 27]

Vaccine Protection	Number of Persons	Number of Typhoid Fever Episodes	Rate per 1000 Person-Years	\% VE (95\% CI)
Total				
Typhoid vaccine recipients	18869	34	0.9	$61(41-75)$
Hepatitis A vaccine recipients	18804	96	2.7	$P<.0001$
Indirect		16		
Nonvaccinees in the intervention clusters	12206	31	0.7	$44(2-69)$
Nonvaccinees in the control clusters	12877		1.3	$P<.0429$
Overall		50	0.8	$5(37-71)$
All residents in the intervention clusters	31075	127	2.1	$P<.0001$
All residents in the control clusters	31681			

Abbreviations: Cl , confidence interval; VE , vaccine effectiveness.

[^0]Table 1: Selected notifiable diseases reported by Medical Officers of Health 16 th 22 $^{\text {nd }}$ Sep 2023 (38 ${ }^{\text {th }}$ Week)

Table 2: Vaccine-Preventable Diseases \& AFP
$16^{\text {th- }} 2^{\text {nd }}$ Sep 2023 (38 ${ }^{\text {th }}$ Week)

Key to Table $1 \& 2$

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.
RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna, KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.
Data Sources:
Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis
CRS** $=$ Congenital Rubella Syndrome
NA = Not Available

Number of Malaria Cases Up to End of September 2023,

$$
02
$$

All are Imported!!!

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

[^1]
[^0]: Prepared by:
 Dr Dhivya A Nathaniel
 Registrar in MD Community Medicine
 Epidemiology Unit

[^1]: Dr. Samitha Ginige
 Actg. CHIEF EPIDEMIOLOGIST
 EPIDEMIOLOGY UNIT
 231, DE SARAM PLACE
 COLOMBO 10

