

RI LANKA 2023

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health

Ministry of Health231, de Saram Place, Colombo 01000, Sri LankaTele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lkEpidemiologist: +94 11 2681548, E mail: chepid@sltnet.lkWeb: http://www.epid.gov.lk

Vol. 50 No. 40

30th- 06th Oct 2023

Assessment of Vaccine Herd Protection: Lessons learned from vaccine trials Part III

This is the third article of a series of 3 articles on the "Assessment of Vaccine Herd Protection: Lessons learned from vaccine trials".

Individually Randomized Controlled Trials

Individually Randomized Controlled Trials (IRCT) were primarily utilized for measuring direct vaccine protection of vaccine recipients. The Vaccine Protective Efficacy (PE) calculated in IRCTs, measures the direct protective benefit of vaccination to an individual in isolation from other persons in the same population. To reiterate, the IRCT aims to estimate vaccine protection independent of vaccine herd effects. However, if suitable geographic clusters can be identified with sufficient variation in vaccine coverage between these clusters, vaccine herd effects can be estimated by evaluation of the correlation of disease incidence with levels of vaccine coverage in these clusters. These clusters are usually defined by Geographic Information Systems (GIS), and level of vaccine coverage in surrounding clusters.

A reanalysis of a placebo controlled, **IRCT** of the inactivated cholera vaccine in Matlab, Bangladesh¹⁰ was carried out in 2005. Ad-

vantage was taken of the differing levels of vaccine coverage of geographically defined groups of individuals that could have occurred due to the randomization process or different participation rates. The geographic unit of analysis was noted as the 'bari' - which is a patrilineal linked cluster of households (grouped by descent through the male line or relationship with the father), due to the assumption that most cholera transmission tends to occur within rather than between 'baris'. Incidence rates of cholera among placebo recipients was inversely related to levels of vaccine coverage in & around the 'baris' (7 cases per 1000 in lowest quintile of coverage vs 1.5 cases per 1000 in the highest quintile; P<0.0001), thus displaying the IVP that the oral cholera vaccine induced among nonvaccinees. Using information from the same trial, a dynamic population-based model of cholera transmission was developed and showed that if roughly half of the population were vaccinated, the number of cholera cases would considerably reduce among unvaccinated people by 89% and among the entire population by 93%.¹¹

	Target population (%)	Vaccine g	group		Placebo group						
		n	Cases	Risk per 1000*	n	Cases	Risk per 1000†				
<28%	24954 (20.6%)	5627	15	2.66	2852	20	7.01				
28-35%	25 059 (20.7%)	8883	22	2.47	4429	26	5.87				
36–40%	24583 (20.3%)	10772	17	1.57	5503	26	4.72				
41-50%	24159 (19.9%)	11513	26	2.25	5801	27	4.65				
>50%	22394 (18.5%)	12541	16	1.27	6082	9	1.47				
Total	121149 (100%)	49336	96	1.94	24667	108	4·37				

Adapted from reference 44. *p=0.05 for trend and p<0.0001 for trend in adjusted analyses.

Table 2: Cholera risk by the level of cholera vaccine coverage of baris, Matlab, Bangladesh 1985-86

Contents	Page
1. Assessment of Vaccine Herd Protection Lessons learned from vaccine trials Part III	1
2. Summary of selected notifiable diseases reported (23 rd – 29 th September 2023)	3
3. Surveillance of vaccine preventable diseases & AFP (23 rd – 29 th September 2023)	4

WER Sri Lanka – Vol. 50 No . 40

Non-Randomized (Observational) Studies

In such studies, as there is no comparator group receiving a control agent or placebo, comparisons are made between the vaccinated and unvaccinated individuals in the community itself. The geographic area where the vaccine is administered is divided into clusters with a mixture of vaccinated and unvaccinated persons. **IVP** is estimated through comparisons of the disease incidence in nonvaccinated individuals in each geographic cluster, by level of vaccine coverage.

Following a mass oral cholera vaccination campaign in Zanzibar¹², the incidence of acute watery diarrhea that was laboratory confirmed as cholera over course of 14 months was assessed in both vaccine recipients and nonvaccinees. The subsequent lower risk of cholera in nonvaccinated individuals residing in areas with low vaccine coverage was considered as **IVP**. There was a statistically significant difference (P<0.0001) in the lowest quintile of coverage (2.29 cases per 1000) versus the highest quintile (0.87 cases per 1000). Further, the absence of vaccine protection against non-cholera diarrhea inferred that the vaccine effectiveness found against cholera could not be explained by bias.

Conclusion

Vaccine herd protection could be critical to the ability of the vaccine to control a disease under realistic public health conditions. Studies on **vaccine herd protection** are now often required to inform in policy decisions about vaccine introduction including in assessments of the cost effectiveness of vaccines. Herd protection by vaccines has conventionally been assessed through observations of disease trends after the vaccine is included in the national immunization programme. Potential suitability of newer study designs such as **CRCTs** and **IRCTs** for measurement of **vaccine herd protection** offers the opportunity to assess this type of protection even before the vaccine is licensed and with a greater protection against bias.²

CRCTs are a relatively straightforward method to assess vaccine herd protection with unbiased measurements of IVP, TVP & OVP. Similarly, methodological advances such as usage of mapping techniques has allowed vaccine herd protection to be assessed in IRCTs and nonrandomized trials as well. These approaches also allow the estimation of doseresponse relations between vaccine coverage levels and magnitude of these effects.²

However, it needs to be noted that several limitations exist for the above approaches. Herd protective effects for a particular vaccine could vary between populations dependent on levels and patterns of vaccine coverage, differences in host immune responses to the vaccine & differences in transmission patterns of the target disease.² Thus, demonstration of **vaccine herd protection** prior to vaccine licensing would only indicate the potential for the vaccine to induce herd protection and does not guarantee that the vaccine will confer herd protection when it is used in the community. The same holds true conversely as well. Absence of herd protective effects in prelicensing trials does not exclude the possibility of a vaccine to confer herd protection.

30th-06th Oct 2023

Moreover, pre-licensure assessments of vaccine herd protection should not be seen as a suitable replacement for postlicensure assessment as only the latter studies can provide a widely comprehensive picture of a vaccine's herd protective effects. Nevertheless, the ability of randomized trials to yield important information about vaccine herd protective effects and possibility of having these assessments during vaccine development and implementation gives support to greater use of these approaches as complimentary to conventional prelicensure individually randomized trials.

<u>Prepared by:</u> Dr Dhivya A Nathaniel Registrar in MD Community Medicine Epidemiology Unit

Adapted from the following Sources

- Clemens, J., Deen., J. (2021). Assessment of Vaccine Herd Protection: Lessons learned from Cholera and Typhoid vaccine trials. *The Journal of Infectious Diseases*, 224(S7): S764-9.
- Clemens, J., Šhin, S., Ali, M. (2011). New approaches to the assessment of vaccine herd protection in clinical trials. *Lancet Infect Dis;* 11:482–7.
- Healy, C.M., Rench, M.A., Baker, C.J. (2011). Implementation of cocooning against pertussis in a high-risk population. *Clin Infect Dis*; 52:157–62.
- Ali, M., Clemens, J. (2019). Assessing vaccine herd protection by killed whole-cell oral cholera vaccines using different study designs. *Front Public Health*;7: 211.
- Jeuland, M., Cook, J., Poulos, C., Clemens, J., Whittington, D.; DOMI Cholera Economics Study Group (2009). Costeffectiveness of new-generation oral cholera vaccines: a multisite analysis. *Value Health*;12: 899–908.
- Løchen, A., Croucher, N.J., Anderson, R.M. (2020). Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. *Sci Rep;10*: 18977
- Smith, P.G. (2010). Concepts of herd protection and immunity. *Procedia Vaccinol*;2: 134–9.
- Sur, D., Ochiai, R.L., Bhattacharya, S.K., et al. (2009). A cluster randomized effectiveness trial of Vi typhoid vaccine in India. N Engl J Med; 361: 335–44.
- Hayes, R.J., Alexander, N.D., Bennett, S., Cousens, S.N. (2000). Design and analysis issues in cluster-randomized trials of interventions against infectious diseases. *Stat Methods Med Res*; 9: 95 –116.
- Ali, M., Emch, M., von Seidlein, L., et al. (2005). Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. *Lancet*; 366: 44–9.
- Longini IM Jr., Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD. (2000). Controlling endemic cholera with oral vaccines. *PLoS Med; 4*:e336.
- 12.Khatib, A.M., Ali, M., von Seidlein, L., et al. (2012). Effectiveness of an oral cholera vaccine in Zanzibar: findings from a mass vaccination campaign and observational cohort study. *Lancet Infect Dis*; *12*: 837–44.

30th-06th Oct 2023

 Table 1: Selected notifiable diseases reported by Medical Officers of Health
 23^{rd-} 29th Sep 2023 (39th Week)

		•	•	•	•	•	•	•	•			•	,	•	•	•	•	•	•	•	•	•	•		•	`	•	•	<i>'</i>
	č*	100	100	20(100	100	100	100	100	100	6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	6	
WRCI	*–	40	6	63	89	28	62	38	33	59	68	37	52	17	28	99	12	31	29	29	30	37	67	30	36	34	51	42	
ania-	m	9	43	2	26	265	С	С	527	160	2	0	~	10	7	~	00	5	463	19	511	360	38	154	162	38	0	2814	
Leishm	_	0	с	0	~	9	0	0	16	4	0	0	0	0	0	0	0	0	19	0	12	С	0	с	0	2	0	71	
itis		38	106	87	24	7	23	25	18	20	15	2	00	12	2	34	48	29	177	64	43	17	43	71	133	76	35	1157	
Mening	□	-	4	0	~	0	0	~	-	2	0	0	0	0	0	~	-	0	9	с	0	0	с	0	0	~	-	26	
L XOO		268	238	428	242	54	157	291	129	264	157	19	2	23	17	88	73	63	458	95	215	75	144	63	183	388	116	1250	
hickenp	Θ	0	5	9	12	0	9	10	с	8	~	0	0	0	с	4	ო	-	00	2	00	0	ო	2	2	4	4	107 4	
ບ ເ	A S	0	0		2	0	0	~	0	2	2	0	0	0	0	2	0	0	2	0	2	0	0	~	2	0	0	17	
Humar	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	в	5	16	10	З	9	5	2	6	5	5	0	~	2	~	00	~	3	<u>-</u>	~	4	13	83	24	17	9	0	241	
Viral	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	~	0	0	ი	
	~	0	10	2	53	14	64	71	68	32	506	7	5	Ø	9	~	2	15	17	00	30	7	51	35	27	42	~	1082	
Typhus	A	0	0	0	2	0	~	~	0	~	ю	0	0	0	0	0	0	0	~	0	0	~	0	0	0	~	0	1	
irosis		269	486	723	247	127	126	780	255	453	12	00	36	30	36	82	115	64	341	78	246	156	297	462	1012	584	50	7075	
-eptosp		с	0	12	9	~	5	16	2	4	0	0	0	0	0	0	~	0	14	~	4	2	7	4	g	0	~	110	
oi-		12	5	16	17	29	49	29	0	19	31	16	0	18	12	18	53	67	7	2	00	11	44	00	32	15	0	527	
Food P	B	0	0	0	0	2	0	~	0	~	~	0	0	~	0	0	0	0	0	0	0	0	0	с	13	0	0	22	
Fever F	4	7	7	~	10	~	ო	5	~	~	12	~	~	0	4	5	~	-	~	~	~	~	0	0	С	2	0	65	
nteric	Θ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	-	
nalit E	A	12	16	ю	2	ო	4	13	ო	8	2	0	0		~	00	~	-	15	с	~	9	5	9	16	7	10	142	
Encepl	A	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~ -	0	0	7	
ntery I	- -	14	19	22	33	4	136	43	, -	24	85	0	9	10	13	167	0	22	38	31	13	15	36	21	42	22	65	910	
Dyser	-	0	0	0	0	0	0	С	~	~	0	0	0	0	0	2	0	0	0	~	0	0	0	0	~	0	0	6	
ever		11655	11726	4149	6244	1369	238	2384	1270	1637	2034	89	83	156	118	2159	223	1999	2627	2894	682	528	969	624	1937	2699	1687	62180	
engue F	Ξ	62	46	34	120	26	က	45	2	21	26	0	~	4	~	10	2	ო	16	4	4	~	0	9	14	14	o	489	
	A						liya		ota			id						lee	ala		apur	uwa		ala	D.			٩	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEl	Galle	Hambanto	Matara	Jaffna	Kilinochc	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincoma	Kurunega	Puttalam	Anuradha	Polonnaru	Badulla	Monaraga	Ratnapura	Kegalle	Kalmune	SRILANK	

WER Sri Lanka - Vol. 50 No. 40

Table 2: Vaccine-Preventable Diseases & AFP

30th-06th Oct 2023

23^{rd-}29th Sep 2023 (39th Week)

Disease	No.	of Ca	ases	by P	rovir	nce				Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date					
	W	С	S	Ν	Е	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022					
AFP*	00	00	00	00	00	00	00	00	00	00	03	72	60	35.8 %					
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %					
Mumps	00	02	00	01	00	00	00	00	01	04	01	184	69	166.6 %					
Measles	22	03	04	04	00	01	03	00	00	37	00	530	17	3017.6 %					
Rubella	00	01	00	00	00	00	00	00	00	01	00	06	00	0 %					
CRS**	00	00	00	00	00	00	00	00	00	00	00	02	00	0 %					
Tetanus	00	00	00	00	00	00	00	00	00	00	00	06	05	100 %					
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %					
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	02	01	100 %					
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	07	01	600 %					
Tuberculosis	101	10	18	04	04	00	03	07	04	151	94	6948	5100	36.2%					

Key to Table 1 & 2

Provinces:

W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10