

WEEKLY EPIDEMIOLOGICAL REPORT

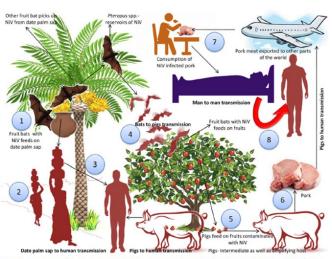
A publication of the Epidemiology Unit Ministry of Health 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Nipah Virus outbreaks

Part II

Vol. 50 No. 48

25th- 01st Dec 2023


This is the second article of a series of 3 articles on the "Nipah Virus outbreaks.".

How did this virus jump to humans?

Once the culling of over a one million pig population was carried out in affected states in Malaysia, the outbreak completely subsided which led to the question of where the pigs got the virus. Further studies revealed that pigs had been contracting the Nipah virus for years which had been likely picked up from bats.⁶ However, these outbreaks were quite small and went unnoticed as the pig farms were small as well, being usually run by families. The economic boom in the nineties in Malaysia meant that pork could be eaten more frequently by a larger proportion of families, leading to increased demand for pork. Thus, in response, the pig farming industry adapted by changing the way that pigs were raised. Pigs were packed

into tight quarters and farms were industrialized to enable the production of more meat with fewer resources. However, this is where the issue arises when it comes to communicable diseases. If a virus was able to get into pigs, it could multiply and spread rapidly, thus hopping on over to other farms and eventually into the farmers themselves. With the changes in the way that our food has grown, so have the changes in the way diseases spread. Agricultural industrialization along with factory farming, with all its benefits, also can thus trigger such outbreaks. This has been seen in strains of MRSA, bird flu, swine flu and now Nipah.

Although a repeat outbreak has not been reported since 1999 from Malaysia & Singapore, subsequent outbreaks have been reported in Bangladesh, India, and the Philippines.

Due pains ap to human transmission of the Nipah virus. 1. Fruit bats acts as natural reservoir of Nipah viruses. Fruit bats with NV feeds on date pain sap. Virus can survive in solutions that are rich in sugar, viz, fruit pulp. 2. Virus transmitted to human through the consumption of date pain sap. 3. Fruit bats of *Perspus* spp. which are NV reservoirs visited such fruit trees and got oppor-turity to naturally spill the drop containing virus in the fam to contaminate the fam soil and fruits. 4. Contaminated fruits are consumed by pigs and other animals. Pigs act as intermediate as well as amplifying host. Combination of close surround-ings of fruiting trees, fruits-like date paim, fruit bats, pigs and human altogether form the bads of emergence and spread of infected pork can act as a source of infection to human. 7. Close contact with NV affected human can lead to spread of NV to other personal.

Figure 3 - Transmission of the Nipah Virus; Singh et al (2019)

Contents	Page
1. Nipah Virus outbreaks - Part II	1
2. Summary of selected notifiable diseases reported $(18^{h} - 24^{th} \text{ October } 2023)$	3
3. Surveillance of vaccine preventable diseases & AFP $(18^{th} - 24^{th} \text{ October } 2023)$	4

RI LANKA 202.

WER Sri Lanka – Vol. 50 No . 48

Nipah Outbreaks in India

Early 2001 saw an outbreak of infectious febrile illnesses occurring in Siliguri city (Northern part of West Bengal). This was initially suspected to be due to the Measles virus, but retrospectively, NiV was found via serological analysis of the serum of infected patients. The outbreak was sudden and dangerous with 66 laboratory-confirmed cases, of which at least 43 (68%) succumbed to the disease. All the cases were adults without any history of pig or animal exposure although with some evidence of nosocomial transmission. There was no role for pigs during this transmission, with mainly person-toperson contact primarily in hospital settings taking place. The second outbreak of NiV in India took place in April 2007 in the village of Belechuapara near the Bangladesh border in West Bengal. While this outbreak only had five cases, case fatality was 100%. However, the third outbreak in May 2018, was reported from another district called Kozhikode of Kerala in the southern part of India. This outbreak began with the death of three individuals within the same family accompanied by the death of a healthcare worker who also succumbed to the infection. The cause of the infection was hypothesized to be due to the interference of humans into a bat habitat. Samples of bats from the Pteropus genus from the Kozhikode district were tested and revealed 10 of 52 samples testing positive for NiV by RT-PCR. Droplet infection was thought to have facilitated human-to-human transmission. This outbreak was responsible for 18 cases of which 17 persons (94.4%) succumbed to the infection.⁷ Subsequent outbreaks in 2019 and 2021 occurred in Kerala in the Ernakulum and Kozhikode districts with one case each. Currently, in 2023, the same Kozhikode district in Kerala is experiencing its third outbreak with it being the fourth outbreak in the Kerala state in August - September 2023 with a current total of 6 cases and 2 deaths so far. All infected cases were males aged between nine and 45 years. All six cases have been linked to each other either being related or with evidence of nosocomial transmission. For the current outbreak, strong and immediate public health measures were taken by the district health authorities probably due to their experience with previous outbreaks. Coordination among several health teams to aid in containment, immediate lockdown of affected areas in the district, closing of public places such as schools and hospitals, enhanced surveillance and contact tracing including quarantining of high-risk contacts including HCWs was carried out. Laboratory testing revealed no positive environmental or animal samples so far. Other control measures included improving health facility preparedness, infection and prevention control training of HCWs, ensuring adequate PPE, ensuring standard protocol is followed with management of infected bodies, risk communication activities, and collaboration with the animal sector. Outbreaks in India have been considerably smaller than the outbreak in Malaysia, but as noted have been occurring frequently since 2001, lending credence to the idea that the virus may have been infecting humans for many years, albeit undetected.7

Compiled by

Dr Dhivya A. Nathaniel Registrar in MD Community Medicine Epidemiology Unit

References

- Woolhouse, M., Gaunt, E. (2007). Ecological origins of novel human pathogens. *Crit Rev Microbiol*. 33(4):231 -242.
- Chua, K.B., Bellini, W.J., Rota, P.A., et al. (2000). Nipah virus: a recently emergent deadly paramyxovirus. *Science*. 288(5470):1432-1435.
- Wolfe, N.D., Dunavan, C.P., Diamond, J. (2007). Origins of major human infectious diseases. *Nature*, Vol 447, 279–283.
- 4) Middleton, D.J., Morrissy, C.J., van der Heide, B.M., Russell, G.M., Braun, M.A., Westbury, et al. (2007). Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). *J. Comp. Pathol.* 136, 266– 272.
- 5) Looi, Lai-Meng., Chua, Kaw-Bing. (2007). Lessons from the Nipah virus outbreak in Malaysia. *The Malay*sian Journal of Pathology. Department of Pathology, University of Malaya and National Public Health Laboratory of the Ministry of Health, Malaysia. 29 (2): 63 -67. PMID 19108397
- Chua, K.B., Koh, C.L., Hooi, P.S., Wee, K.F., Khong, J.H., et al. (2002). Isolation of Nipah virus from Malaysian Island flying-foxes. *Microbes Infect*. 4(2):145-51. doi: 10.1016/s1286-4579(01)01522-2. PMID: 11880045.
- 7) <u>https://www.who.int/emergencies/disease-outbreak-</u> news/item/2023-DON442
- Gurley, E.S., Spiropoulou, C.F., de Wit, E. (2020). Twenty years of Nipah virus Research: Where do we go from here? *The Journal of Infectious Diseases*, Vol (221), 4, 1, PP S359-S362. <u>https://doi.org/10.1093/ infdis/jiaa078</u>
- Luby, S. (2013). The pandemic potential of Nipah virus. *Antiviral Research*. Vol 100 (1), pp 38-43. <u>https://doi.org/10.1016/j.antiviral.2013.07.011</u>
- Ching, P.K.G., de Los Reyes, V.C., Sucaldito, M.N., et al. (2015). Outbreak of Henipavirus Infection, Philippines, 2014. *Emerg. Infect. Dis.*, 21, 328–331.
- 11) Singh, R.K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., et al. (2019). Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. *Veterinary Quarterly*, 39:1, 26-55, DOI: 10.1080/01652176.2019.1580827

WER Sri Lanka - Vol. 50 No. 48

25th- 01st Dec 2023

Table 1: Selected notifiable diseases reported by Medical Officers of Health 18th-24th Nov 2023 (47th Week)

Tabl	e I.	. 36	elec	tea	noti	TIAD	ie a	Isea	ises	rep	orte	a by		aica	U	TICE	rs o	THE	altr	1 10	8 ^{th-} 2	24 ^m	NOV	V 20	23	(47 ^{ti}	• • • •	eek,)
	C**	100	100	100	100	100	100	100	100	100	93	100	100	100	66	100	100	100	100	100	66	66	66	100	66	100	100	66	0000040
WRCD	*⊢	40	10	330	84	26	58	37	31	55	69	47	55	19	27	64	14	30	29	28	29	36	63	30	35	34	51	41	
Leishmania-	В	7	44	4	34	318	S	с	618	182	2	0	~	1	8	~	12	7	561	23	666	416	43	178	187	43	0	3372	**
Leishr	A	0	0	0	0	2	0	0	~	0	0	0	0	0	0	0	0	0	c	0	0	~	0	0	0	~	0	8	
Meningitis	В	44	125	97	30	10	34	31	19	23	19	2	10	17	2	48	62	30	210	85	49	18	49	80	142	93	42	1371	
Meni	A	2	~	0	0	0	0	0	0	0	0	0	0	2	0	~	0	0	2	~	0	0	0	0	~	0	0	10	
Chickenpox	в	344	291	519	311	71	203	358	144	295	185	19	ę	34	19	130	94	86	508	123	231	92	192	74	228	449	176	5179	-
Chick	A	8	9	0	2	0	4	2	0	0	2	0	0	с	0	~	~	с	4	4	~	~	0	0	5	5	4	59	
Human	В	0	0	~	2	0	0	~	0	2	2	0	0	0	0	4	0	0	ო	0	2	0	0	~	0	0	0	20	
Hur	A	6 0	20 0	10 0	5 0	8	6 0	2 0	0 6	7 0	7 0	1	1	3	1	8	2 0	5 0	5 0	1	4 0	16 0	95 0	33 0	18 0	6 0	0	9	
al	ш	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	3 289	
Viral	A	0	12	2	64	14	74	73	68	34	548	ŝ	9	10	7	2	2	15	19	0	33	0	63	39	30	45	~	187	-
Typhus	В	0	0	0	0	0	0	0	0	0	10 5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	12 11	
	A	340	581	809	290	137	183	884	314	514	4	6	39	37	40	109	134	75	439	111	273	188	333	505	200	703	60		
Leptospirosis	В	3 34	9 28	0 8(0	0	4 18	5 88	3 3	3 5.	0	~	0	2	7 0	5 1(8	0	6 4;	<u>+</u>	2 27	8	1 3.	0 5(7 12(2 7(5	2 8321	
Lept	A	2		о о					0			0	0						6	5			2	0		0		3 82	-
d Poi-	в	1	14	10	23	30	51	39	0,	69	42	18		26	12	18	70	69	0,			11	4	ω	58	1	4	689	
Food	۲	0	0	0	0	-	~	~	0	0	с С	0	0	0	0	0	~	0	0	0	0	0	0	0	~	0	2	10	
Encephalit Enteric Fever	в	2 4	0 13	0	0 11	0	0 3	0 6	0	0	1 15	0	0	0	0 5	0 5	0	0	0	0	0	0	0 0	0 0	0 3	0 2	0 0	3 79	:
t Ent	A			5	о С	33	5 (4	0	, V	0	0	-	-		-	-		5 (7	9	9	9		2			
cephali	В	18) 21					15								11	0		17						19		12	174	
	A	15 4	1	28 0	1	5 0	7 0	-	4 0	28 0	3	19 0	7 0	4	15 0	7 0	17 0	28 0	62 0	45 0	16 0	26 0	45 0	26 0	1	26 0	1	8	:
Dysentery	В	0	0 21	0 2	0 41	~	1 157	0 51	0 14	0 2	6 143	2	0	0 14	0	6 207	0	1 2	1 6	2 4	0	0 2	0 4	0 2	2 61	0 2	1 71	23 1188	
	A			28		35	308	91		38	88	105	100	183	127	37	256	32	34	22	726	590	_	700	<u>–</u>				
Dengue Fever	в	13016	12615	4428	7286	1685		2991	1340	1838	2488					2287		2062	3064	3122			1304		2111	2994	1714	69440	
Dengu	A	155	32	~	33	38	17	89	7	4	141	7	~	4	0	22	с С	5	50	28	0	13	48	~	22	5	-	727	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Source: Weekly Returns of Communicable Diseases (esurvillance.epid.gov.lk). T=Timeliness refers to returns received on or before 24th Nov, 2023 Total number of reporting units 358 Number of reporting units data provided for the current week: 339C***Completeness + a = Cases reported during the current week. B = Cumulative cases for the year.

WER Sri Lanka - Vol. 50 No. 48

Table 2: Vaccine-Preventable Diseases & AFP

25^h- 01st Dec 2023

18th-24th Nov 2023 (47th Week)

Disease	No. of Cases by Province										Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	W	С	S	Ν	Е	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022	
AFP*	00	01	00	00	00	01	00	00	00	02	01	86	74	16.2 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	00	00	00	00	00	00	00	00	00	212	85	149.4 %	
Measles	08	00	00	03	00	00	00	00	00	11	02	747	34	2097 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	09	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	02	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	06	05	20 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	02	04	12	-66.6 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	07	01	600 %	
Tuberculosis	99	15	15	08	24	00	04	10	19	194	48	8375	6052	38.38%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10