

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 50 No. 37

09th-15th Sep 2023

Assessment of Vaccine Herd Protection Part II

This is the second article of series of two articles regarding 'Assessment of Vaccine Herd Protection Part II'.

On the other hand, vaccine herd protection results from the reduction of the intensity of transmission of the targeted infection in a population, owing to the presence of people who are made immune to the infection by vaccination. This reduced intensity of transmission arises from the reduced transmission from exposed vaccinees to their subsequent contacts. Herd protection can be induced by both live vaccines (e.g. measles vaccine) and by non-live vaccines (e.g. whole cell pertussis vaccine). In contrast with vaccine herd immunity, vaccine herd protection occurs only for target infections that are transmitted from person to person, either directly or indirectly.¹

Reduction in the transmission intensity of the target pathogen in a population can result in protection of non-vaccinated neighbors, termed indirect protection. This is in contrast to the direct protection of a vaccinated person owing only to the vaccine-induced immunity in that person. Further, reduction in transmission intensity can result in improved protection of vaccinees, because of a reduction in exposure to the pathogen and sometimes because of the greater ability of vaccine-induced immunity to protect against a light rather than a heavy challenge. Thus, this enhanced protection of vaccinees attributable to both the direct vaccine protection & the additional protection attributable to reduced transmission is termed as 'total protection.

Herd Immunity Threshold

A common variable that we see in relation to vaccine herd protection is the herd immunity threshold that reflects the proportion of the population that must be immune – because of vaccination or natural immunity – for herd protection to eliminate person-toperson transmission. If this is reached, for example through immunization, then each case leads to a single new case (R = 1) and the infection will become stable within the population.

Herd Immunity Threshold (HIT) =

If the threshold for herd immunity is surpassed, then R < 1, and the number of cases of infection will decrease. This is an important measure used in infectious disease control, immunization and eradication programmes.

Traditional assessments of vaccine herd protection after license of vaccines

Traditionally, the herd protective effects of vaccines have been studied mainly after licensing and when being used in public health practice, where both *concurrent* (collection of different types of data at the same time) and *nonconcurrent* (collection of data of different individuals at different times) study designs are used.

An example of a concurrent study design is the study of the incidence of measles in non-vaccinated children residing in different regions of Milwaukee, USA, which displayed that the incidence of measles among non-vaccinated children who were concurrently followed up was inversely related to the level of coverage of children given the measles vaccine. This finding is consistent with the concept of vaccine herd protection of non-vaccinated children.²

C	ontents	Page
	Assessment of Vaccine Herd Protection Part II	1
2.	Summary of selected notifiable diseases reported $(02^{nd} - 08^{th}$ September 2023)	3
3.	Surveillance of vaccine preventable diseases & AFP (02 nd – 08 th September 2023)	4

SRI LANKA 2023

WER Sri Lanka - Vol. 50 No . 37

A more frequent design to assess vaccine herd protection compares secular trends of the incidence of the target disease with secular trends of vaccine coverage of the targeted population. Through this design, an assessment is carried out of whether the secular decrease in disease incidence is more than what could be expected on the basis of level of coverage of the population targeted for vaccination. An example of this type of assessment is the analysis of the decrease in invasive pneumococcal disease attributable to vaccine serotypes in the USA after introduction of a 7-valent pneumococcal protein conjugate vaccine in childhood immunization programmes; which showed a dramatic fall in incidence in targeted age groups that was much higher than could be explained on the basis of vaccine coverage levels and known individual-level protective efficacy of the vaccine; with an extra finding of major decrease in disease in elderly population (a group that was not targeted for vaccination).

New Approaches to Assessment of Vaccine Herd Protection

Often small clinical trials are done prior to vaccine licensing to assess if the vaccine reduces mucosal colonization by the target pathogen among vaccinees, theorizing that preventing colonization by vaccination could translate into vaccine herd protection. This is evidenced through the Haemophilus influenzae type b & pneumococcal polysaccharide-protein conjugate vaccines, which provide protection to vaccine recipients against nasopharyngeal colonization with vaccine-targeted organisms, and thus this reduced colonization is theorized to spur the herd protective effects against invasive disease, conferred by these vaccines. A shortcoming of this type of trial is that they are insufficient to confirm if the vaccine confers such protection and further do not allow assessment of relation between extent of vaccine coverage and extent of anticipated vaccine herd protection.

Phase 3 individually randomized vaccine efficacy trials which are required by most national regulatory bodies prior to vaccine licensing, are designed to measure only the direct vaccine protection of the vaccine recipients. This type of randomization is done so that adequate geographical dispersion is created of the vaccine recipients in the population, so that the levels of coverage will not be sufficient to reduce transmission (due to the trial). Even if the coverage levels do reduce transmission, this should ideally benefit both the vaccine recipients and non-vaccinees equally, so that the ratio of incidence of disease in vaccinees and non-vaccinees (which is the basis on which calculation of vaccine protective efficacy is done) will be similar to that recorded had the transmission not be reduced.¹

Considering the importance of evidence regarding vaccine-induced herd effects to decisions about the introduction of new vaccines into routine immunization programmes; clinical trials of vaccines should be designed to assess not only direct vaccine protection but also vaccine-induced herd effects.⁴ Advances in the design and analysis of vaccine trials with the endpoint being clinical disease, have now allowed us to assess a vaccine's ability to confer herd protective effects against important clinical outcomes, even prior to when a vaccine is licensed.¹

09th-15th Sep 2023

Trial designs that randomize clusters of individuals rather than the individuals themselves, can assess both the direct and herd vaccine protective effects for a vaccine that has been designed to prevent an infection that is transmitted from person to person. In clusterrandomized trials, consenting eligible individuals within a cluster will receive the agent (vaccine or a placebo) assigned to the cluster.¹

The potential suitability of both cluster-randomized and individually randomized trials for measurement of herd protection offers opportunities to assess the type of protection even before the vaccine is license and with greater protection against bias.

Further details on assessment of vaccine herd protection utilizing new approaches and measurement of vaccine herd protection will be elaborated upon in subsequent articles.

Sources:

- Clemens, J., Shin, S., Ali, M. (2011). New approaches to the assessment of vaccine herd protection in clinical trials. *Lancet Infectious Diseases, 11*: 482-87.
- Schlenker, T., Baine, C., Baaughman, A., Hadler, S. (1992). Measles herd immunity. The association of attack rates with immunization rates in preschool children. JAMA; 267: 823–26.
- Whitney, C., Farley, M., Hadler, J., et al. (2003). Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. *N Engl J Med*; *348*: 1737–46.
- Clemens, J., Brenner, R., Rao, M., Lowe, C., Tafari, N. (1996). Evaluating new vaccines for developing countries: Efficacy or effectiveness? *JAMA*; *275:* 390 –97.

Prepared by: Dr Dhivya A Nathaniel Registrar in MD Community Medicine Epidemiology Unit

WER Sri Lanka - Vol. 50 No. 37

09th-15th Sep 2023

Tab	Table 1: Selected notifiable diseases reported by Medical Officers of Health 02 ^{nd-} 08 th Sep 2023 (36 th Week)														k)														
	C**	100	100	100	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	66	100	100	100	100	100	100	100	66	
WRCD	*⊢	39	2	31	89	28	63	38	31	58	99	32	50	18	24	65	10	29	28	28	29	36	67	29	37	33	49	41	
		9	36		25	243	2	ω	472	141	2	0	0	10	7		9	2	412	19	452	325	34	143	140	34	0	2516	
Leishmania-	A B	0		0	0	9	0	0	7	2	0	0	0	0	0	0	0	0	8	0	16	2	2	0	0	0	0	4	
	В	35	88	83	22	ъ	21	23	16	16	14	2	8	12	2	28	42	28	163	57	43	16	38	67	128	68	34	1059	
Meningitis	A	2	7	10	2	÷	2	7	0	0	0	0	0	0	0	0	Ч	m	11	ъ	0	0		4	7	9	m	67	
	В	239	218	396	206	50	137	259	117	240	153	16	2	21	12	79	62	56	424	06	200	70	136	61	169	347	100	3860	
Chickenpox	A	8	10	17	∞	0	11	8	ω	8	4	H	0	0	0	2	0	Ч	21	2	6	2	S		7	13	15	156	
an	В	0	0		2	0	0		0	2	2	0	0	0	0		0	0	2	0	2	0	0	ч	2	0	0	16	
Human	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	в	ъ	15	∞	ω	ъ	S	7	6	ъ	ъ	0	0			9	Ч	m	6		4	12	78	22	16	ъ	0	221	
Viral	A	0	-		0	0	0	ч	0	0	0	0	0	0	0		0	0	0	0	H	0	4	0	0	0	0	6	
sn	В	0	8	2	47	13	60	57	99	30	501	7	Ŋ	8	9		2	15	16	8	30	9	49	34	27	36		1035	
Typhus	A	0	0	0	2	0	ω	н	4	н	4	0	0	0	0	0	0	0		0	0		2		ч	Η	0	22	
Leptospirosis	В	244	432	654	228	123	116	741	246	437	12	8	34	30	35	75	112	61	320	68	237	146	278	449	957	549	48	6640	
Leptos	A		11	31	6			21	7	10		0	2	0		0	0	0	ъ	8		2	4	9	25	16	2	165	
d Poi-	В	11	Ŋ	9	17	14	48	24	6	17	28	16	0	6	12	18	52	65	9	2	8	11	4	ъ	17	15	0	459	
Foo	۲	0	0	0	7		4	0	0	0	0	0	0	Μ	0	0	0	0	0	0		0	0				0	14	
Encephalit Enteric Fever Food Po	В	2	7		10		m	ъ		Ч	12	H		0	4	ъ		н					0	0	2	2	0	64	
Ente	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ephalit	В	11	14	7		ω	4	13	ω	8	7	0	0	н	-	∞	H	Ч	15	ω	Ч	ъ	S	9	15	7	10	135	
	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	S	0	0	0	0	0	0	0	0	9	
Dysentery	В	13	19	20	29	2	131	39	6	21	83	8	9	6	13	162	~	21	38	28	12	13	32	21	38	22	65	861	
DĂ	۲	ч	2	0	0	0	S	2	1	Ч	4	0	0	0	0		1	2	0	Ч		0	2	0	2	2	0	28	
e Fever	В	11430	11541	4000	5867	1304	227	2234	1247	1548	1949	86	79	146	116	2130	211	1992	2551	2869	660	516	927	598	1873	2594	1670	60365	
Dengue Fever	A	84	65	70	201	28	б	64	25	17	31	0				6	2	8	36	19	∞	7	15	28	50	58	9	838	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

WER Sri Lanka - Vol. 50 No. 37

Table 2: Vaccine-Preventable Diseases & AFP

09th-15th Sep 2023

02nd-08th Sep 2023 (36th Week)

Disease	No.	of Ca	ases	by P	rovin	ice		Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date			
	W	С	S	Ν	E	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022	
AFP*	00	00	01	00	00	00	00	00	00	01	02	66	55	20 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	01	00	03	01	00	01	00	01	02	09	04	171	63	171.4 %	
Measles	19	00	08	03	00	01	01	00	06	38	00	378	16	2262.5 %	
Rubella	01	00	00	00	00	00	00	00	00	01	00	04	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	06	05	20 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	02	07	- 71.4 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	06	01	500 %	
Tuberculosis	93	41	22	10	08	01	08	08	25	216	53	6377	4790	33.1%	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10