

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 50 No. 36

02nd- 08th Sep 2023

Assessment of Vaccine Herd Protection Part I

This is the first article of a series of two articles on 'Assessment of Vaccine Herd Protection'

Vaccine Herd Protection is the population level protection in a vaccinated population, that exceeds the effect expected, on the basis of the vaccine's known protective efficacy within individuals and the level of vaccine coverage. Herd protection has been suggested for a diverse array of vaccines used in public health practice.

Herd protective effects of vaccines can result from:

- Transmission of a live vaccine from vaccinee to neighboring nonvaccinee (e.g. OPV);
- Passive transfer of vaccine-induced immunity from one person to another (e.g. maternal immunization with TT, influenza, acellular pertussis vaccines)
- Reduction of transmission of the target pathogen in a population in which a proportion has become immune due to vaccination (occurs either with live or inactivated vaccines & applies only to pathogens transmitted from person to person).

Transmissibility of pathogens from person to person:

Transmissibility of an infectious agent can be quantified by **"basic reproduction number (R₀)"** which denotes the average number of secondary infections produced by a typical case of an infection in a fully susceptible population. Higher the R_0 , greater the intensity of transmission. As an example, if the R_0 for measles in a population is 15, then we expect each new case of measles to produce 15 new secondary cases (assuming that everyone around the case was susceptible). This excludes the new cases produced by the secondary cases.

The basic reproduction number is affected by several factors:

- Rate of contacts in the host population
- Probability of infection being transmitted during contact
- Duration of infectiousness

*For an epidemic to occur, the R_0 must be >1, so that case number is increasing.

However, in the real world, the population will rarely be totally susceptible to a given infection. Some individuals can be immune either due to prior infection which has conferred immunity or as a result of previous immunization. Thus, not all contacts of a diseased individual will become infected and the average number of secondary cases per infectious case will be lower than the R₀. This is referred to as the "effective reproduction number (R_n) " which is the average number of secondary cases per infectious case in a population made up of susceptible and both non-susceptible hosts.

R _n > 1	:Number of cases will increase
R _n = 1	:Disease is endemic
R _n < 1	:Decline in number of cases

The effective reproduction number (R_n) can be estimated by product of the basic reproduction number and the fraction of the host population that is susceptible (S); $R_n = R_0 \cdot S$

For example, if R_0 for influenza is 12 in a population where half of the population is

	Contents										
	1. Assessment of Vaccine Herd Protection Part I	1									
_	2. Summary of selected notifiable diseases reported $(26^{\text{th}} - 01^{\text{st}} \text{ September } 2023)$	3									
	3. Surveillance of vaccine preventable diseases & AFP $(26^{\text{th}} - 01^{\text{st}} \text{ September } 2023)$	4									

RI LANKA 202

WER Sri Lanka – Vol. 50 No . 36

immune, the R_n for influenza will be 12 * 0.5 = 6. Therefore, under these circumstances, a single case of influenza would produce an average of 6 new secondary cases.

*To successfully eliminate a disease from a population, R_n needs to be < 1.

For recently developed and licensed vaccines such as those against rotavirus, pneumococcus and human papillomavirus, the effects of herd protection are seriously considered, as these vaccines are substantially more expensive than the traditional childhood vaccines. In some cases, the cost effectiveness profile of such vaccines becomes favorable only if herd protective effects are considered. Additionally, some new generation vaccines such as the orally administered cholera vaccine confers moderate degree of protective efficacy within individuals and demonstration of herd protection might establish whether using such type of vaccines are sufficient for disease control. The herd protective effects of vaccines could also potentially change the epidemiology and ecology of microbial pathogens, sometimes with deleterious consequences such as shifting the average age of infection by a pathogen or helping to set the stage for replacement of the targeted pathogen by a related pathogen. Evidence about a vaccine's herd protective effects generated by clinical studies of a vaccine, would benefit policy decisions about the deployment of a vaccine.1

Vaccine herd protection

Vaccine-induced herd effects include the terms 'vaccine herd immunity' and 'vaccine herd protection' which are often used interchangeably. Vaccine herd immunity describes the protection of non-vaccinated people exposed to live vaccine organisms transmitted by shedding of these organisms by vaccinees, leading to a protective immune response (e.g. live oral polio vaccine). Thus, herd immunity in this regard, refers to only live vaccines and does not depend on whether the target

infection is transmitted from person to person, or by some other route¹.

Sources:

- * Clemens, J., Shin, S., Ali, M. (2011). New approaches to the assessment of vaccine herd protection in clinical trials. *Lancet Infectious Diseases*, *11*: 482-87.
- Schlenker, T., Baine, C., Baaughman, A., Hadler, S. (1992). Measles herd immunity. The association of attack rates with immunization rates in preschool children. *JAMA*; 267: 823–26.
- Whitney, C., Farley, M., Hadler, J., et al. (2003). Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med; 348: 1737–46.
- Clemens, J., Brenner, R., Rao, M., Lowe, C., Tafari, N. (1996). Evaluating new vaccines for developing countries: Efficacy or effectiveness? *JAMA*; *275*: 390–97.

Prepared by:

Dr Dhivya A Nathaniel Registrar in MD Community Medicine Epidemiology Unit

WER Sri Lanka - Vol. 50 No. 36

02nd-08th Sep 2023

la	fable 1: Selected notifiable diseases reported by Medical Officers of Health 26th-01st Sep 2023 (35th Week)												()																	
		C**	100	100	7	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	66	100	100	100	100	100	100	100	66	
	אצר	*⊢	38	9	0.5	88	28	62	38	30	58	99	30	49	16	23	64	10	29	28	27	28	36	99	29	36	32	48	41	
	nmania-	В	9	35		25	237	2	m	465	139	2	0	0	10	7		9	2	404	19	436	323	32	143	140	34	0	2472	
-	Leis	A	0	2	0	0	\sim	0	0	б	4	0	0	0	0	0	0	0	0	18		ъ	7	0	9	0	7	0	56	
incitio	snibui	в	33	81	73	20	4	19	21	16	16	14	2	8	12	2	28	41	25	152	52	43	16	37	63	121	62	31	992	
Meni	Men	۲	0	ъ	0	0	0	0	0	0	0	0	0	0	0	0	2		0	2	2	0	0	0	9	ω	0	2	23	
	enpox	В	231	208	379	198	50	126	251	114	232	149	15	2	21	12	77	62	55	403	88	191	68	131	60	162	334	85	3704	
, loid	CIICK	A	6	9	12	14	7	8	8		13	2	H	0	H	0	4	0	ω	10	2		2	4	2	4	13	7	129	
40		В	0	0		2	0	0		0	2	2	0	0	0	0		0	0	2	0	2	0	0	Ч	2	0	0	16	
Ē	Ē	A	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2 1	
-	5	В	S	1	2	m	ъ	S	-	6	ъ	S	0	0			ß		m	6		m	17	74	22	16	ß	0	21	
Υü.	5	۲	0		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	m m	
ondar	snud	8	0	8) 2) 45	0 13	2 57	3 56	2 62) 29	2 497	7 0	5	8	1 6	0 1) 2	0 15	1 15	8	30) 5) 47	33) 26	35	0	1 101	
F	-	A	0	-	-		0						0		0		0	-	0		0				U	<u> </u>	-	-	5	
	cospirosis	в	243	421	623	219	122	115	720	239	427	11	8	32	30	34	75	112	61	315	60	236	144	274	443	932	533	46	7 647	
100	Lep	A	4	7	6	4	0	+ 5	+ 18	2	7 7	0	0	0	4		3 2	0	0	16	4	4		t 7	Ŋ	5 16	4	0	5 11:	
iod Doi	-101 000	ш	1	5	9 (15	13	4	3 24	6	17) 28	16	0	6	0 12	0 18	22	9 65	9 (0	6	0 11	4	4	0 16	1	0	44	
1	L	A	2	7	1 (0	1 () Э	5	1 (1 (12	1 (1 (0	4	5	1 (1 (1 (1	1 (1 (0	0	2 (2 (0	4	
torio E		В																											U	
	1 2	۲	0	0 +	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	6	
oquoo	серпа	ш	Ξ	4	2	-	m	4	H	m	8	2	0	0			7		-	10	m		ъ	ъ	9	H	2	Ħ	12	
ů	5 7	∢	0	0	0	0	0	6 0	0	0	0	0	0	0	0	0	1 0	0	0	-1	0	0	0	0	0	1	0	0	3	
	senter	В	12	1	20	53	2	12	37	8	20	52	8	9	6	믭	16	9	10	38	27	Ξ	Ħ	ЭС	21	36	20	65	7 83	
ć	2	∢	0	0	5	0	0	ъ	0	0	0	0	0	0	m		4		0	5	m -		0	2	0	5		0	7 27	
	e rever	в	11346	1147(3930	5666	1276	218	2170	1222	1531	1918	86	78	145	115	2121	209	1984	2515	2850	652	514	912	570	1823	2536	1664	59527	
	neuðr	A	127	107	72	167	36	m	48	12	26	19	0	0	11	m	14	-	2	30	23	2	4	20	28	42	55	~	859	
	גרועא		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

WER Sri Lanka - Vol. 50 No. 36

Table 2: Vaccine-Preventable Diseases & AFP

02nd-08th Sep 2023

26th-01st Sep 2023 (35th Week)

Disease	No.	of Ca	ases	by P	rovir	ice		Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date			
	W	С	S	Ν	Е	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022	
AFP*	00	00	00	00	00	00	01	00	00	01	00	65	53	22.6 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	01	00	05	00	00	00	00	00	06	00	161	58	177.5 %	
Measles	10	02	08	05	00	02	00	01	02	30	00	340	16	2025 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	03	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	06	05	20 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	02	07	- 71.4 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	06	01	500 %	
Tuberculosis	59	07	10	00	15	06	17	04	03	121	627	6161	4737	30.0 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10