

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 50 No. 28

08th- 14th July 2023

Dengue infection – Changes in Epidemiology

Introduction

Dengue remains a significant public health challenge worldwide. It is the most rapidly emerging mosquito-borne viral infection in the world resulting in approximately 390 million infections, and approximately 20,000 deaths annually. World Health Organization named dengue as one of the 10 threats to global health in 2019 due to the burden of infection in low- and middleincome countries, and, also, as there has been a 15-fold increase in dengue over the last 2 decades.

Changing factors for the dengue disease epidemiology

Changes in the dengue virus (DENV) serotypes, population, immunity and other socio -ecological factors such as changes in land use, urban poverty and human movement have been shown to play an important role in the incidence of dengue.

Over time, the epidemiology of dengue infection has undergone several changes. Here are some key aspects of the changing epidemiology of dengue:

Geographic Expansion

Dengue fever was historically prevalent in tropical and subtropical regions, but in recent decades, its geographic range has expanded significantly. The disease has spread to new areas, including temperate regions, due to factors such as urbanization, globalization, and climate change. Outbreaks and sporadic cases have been reported in regions like Europe and the United States, where dengue was previously uncommon or absent.

Increased Disease Burden

The global burden of dengue has increased substantially. The number of reported cases has risen dramatically over the past few decades, with more frequent and larger outbreaks occurring in various parts of the world. This increase in disease burden can be attributed to factors such as population growth, rapid urbanization, inadequate vector control measures, and increased travel and trade, which facilitate the spread of the virus.

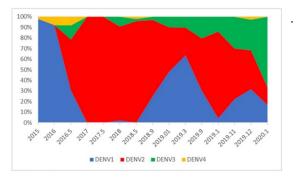
The emergence of Severe Dengue

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), collectively known as severe dengue, have become increasingly recognized and reported. Severe dengue is characterized by severe bleeding, organ failure, and shock. The factors contributing to the emergence and spread of severe dengue are complex and can include viral factors, host factors, and immunological interactions.

Changing Serotype Dynamics

The relative prevalence of different dengue virus serotypes has fluctuated over time. In some regions, specific serotypes have dominated during certain periods, while others have become more prevalent later on. These shifts in serotype dynamics can influence the severity of outbreaks and the risk of severe dengue, as subsequent infections with different serotypes increase

Contents	Page
1. Dengue infection – Changes in Epidemiology	1
2. Summary of selected notifiable diseases reported $(01^{st} - 07^{th} \text{ July } 2023)$	3
3. Surveillance of vaccine preventable diseases & AFP $(24^{\text{th}} - 30^{\text{th}} \text{ June } 2023)$	4


RI LANKA 202

WER Sri Lanka - Vol. 50 No . 28

08th- 14th July 2023

the likelihood of severe disease.

A shift in the dominant serotype can lead to increased dengue transmission and outbreaks. This is because individuals who were previously infected with a different serotype may be susceptible to the new serotype, and the population as a whole may have lower immunity to the new serotype

Figure 1: Changes in the circulating DENV serotypes in Colombo, Sri Lanka from 2015 to January 2020.

Malavige, G. N. et al (2021) explained the unique epidemic seen in Sri Lanka during 2017 and the increase in the number of cases seen toward the latter months of 2019 coincides with the introduction of DENV-2 and DENV-3, respectively using the above graph.

There is scientific evidence supporting the idea that shifts in dengue virus serotypes can contribute to outbreaks. A study published in PLOS Neglected Tropical Diseases in 2013 examined dengue outbreaks in Puerto Rico from 1990 to 2010. The researchers found that outbreaks were associated with the introduction of new dengue serotypes, particularly when a shift occurred from serotype 1 to serotype 2 or 3. Another study published in 2015 investigated dengue outbreaks in Thailand from 2001 to 2014. The researchers found that the introduction and spread of a new dengue serotype (DENV-3) were associated with increased transmission and more severe dengue cases.

In 2019, a study examined dengue outbreaks in Malaysia from 2005 to 2016. The researchers observed that outbreaks were linked to shifts in serotypes, with the emergence of DENV-2 and DENV-3 contributing to increased dengue activity. Cummings et al. (2009) investigated the transmission dynamics of dengue serotype 2 in Thailand over 16 years. It highlighted the impact of serotype shifting on the occurrence of large-scale epidemics and the changing patterns of disease severity.

Thai et al. (2010) - "Dengue infection and disease: epidemiology, risk factors, and preventive measures." This comprehensive review article examined the global epidemiology of dengue and discussed the impact of serotype shifting on the occurrence of severe dengue cases and outbreaks. Vu et al. (2010) explored the epidemiology of dengue in Vietnam and discussed the role of serotype shifting in the occurrence of dengue outbreaks. It emphasized the need for comprehensive surveillance and prevention strategies to address the changing dynamics of dengue transmission. Endy et al. (2011) followed a cohort of school children and examined the circulation patterns of dengue serotypes. It observed that serotype shifting led to changes in the spatial distribution and intensity of dengue transmission.

Urbanization and Aedes Mosquitoes

The urbanization of many regions has created favourable environments for the Aedes mosquitoes, particularly Aedes aegypti, which are the primary vectors for dengue transmission. These mosquitoes thrive in urban settings, where they breed in stagnant water containers found in and around human dwellings. The increased urbanization has contributed to the persistence and transmission of dengue in densely populated areas.

Co-circulation of Arboviruses

Dengue now coexists with other arboviruses, such as chikungunya and Zika viruses, in many regions. These viruses share the same Aedes mosquito vectors and can cause similar clinical symptoms, leading to challenges in diagnosis and surveillance. Co-circulation of multiple arboviruses can also increase the overall disease burden and complicate public health responses.

Understanding the changing epidemiology of dengue is crucial for developing effective prevention and control strategies. Enhanced surveillance, improved vector control measures, public awareness campaigns, and the development of vaccines are important components of efforts to mitigate the impact of dengue infection worldwide.

Compiled by Dr. Kumudu Weerakoon

Senior Registrar in Community Medicine, Epidemiology Unit

References

Malavige, G. N., Jeewandara, C., Ghouse, A., Somathilake, G., & Tissera, H. (2021). Changing epidemiology of dengue in Sri Lanka—Challenges for the future. PLOS Neglected Tropical Diseases, 15(8), e0009624. <u>https://doi.org/10.1371/journal.pntd.0009624</u>

Ariyaratne, D., Gomes, L., Jayadas, T. T. P., Kuruppu, H., Kodituwakku, K., Jeewandara, C., Hetti, N. P., Dheerasinghe, A., Samaraweera, S., Ogg, G. S., & Malavige, G. N. (2022). Epidemiological and virological factors determining dengue transmission in Sri Lanka during the COVID-19 pandemic. PLOS Global Public Health, 2(8), e0000399. <u>https://doi.org/10.1371/</u> journal.pgh.0000399

Jayarathe, S. D., Atukorale, V., Gomes, L., Chang, T., Wijesinghe, T., Fernando, S., Ogg, G. S., & Malavige, G. N. (2012). Evaluation of the WHO revised criteria for the classification of clinical disease severity in acute adult dengue infection. BMC Research Notes, 5(1). <u>https://doi.org/10.1186/1756-0500-5-645</u>

World Health Organization. Dengue and severe dengue. <u>https://www.who.int/health-topics/</u> dengue-and-severe-dengue#tab=tab_1, 2023

Callaway E: Dengue fever climbs the social ladder. Nature 2007, 448:734-735

Sharp TM, Hunsperger E, Santiago GA, Muñoz-Jordan JL, Santiago LM, Rivera A, et al. (2013) Virus-Specific Differences in Rates of Disease during the 2010 Dengue Epidemic in Puerto Rico. PLoS Negl Trop Dis 7(4): e2159. <u>https://doi.org/10.1371/journal.pntd.0002159</u>

Clapham H, Cummings DAT, Nisalak A, Kalayanarooj S, Thaisomboonsuk B, Klungthong C, et al. (2015) Epidemiology of Infant Dengue Cases Illuminates Serotype-Specificity in the Interaction between Immunity and Disease, and Changes in Transmission Dynamics. PLoS Negl Trop Dis 9(12): e0004262. <u>https://doi.org/10.1371/journal.pntd.0004262</u>

Abubakar, S., Puteh, S. E. W., Kastner, R., Oliver, L., Lim, S. Y., Hanley, R., & Gallagher, E. M. (2022). Epidemiology (2012-2019) and costs (2009-2019) of dengue in Malaysia: a systematic literature review. International Journal of Infectious Diseases, 124, 240–247. <u>https://doi.org/10.1016/j.ijid.2022.09.006</u>

Cummings DAT, lamsirithaworn S, Lessler JT, McDermott A, Prasanthong R, Nisalak A, et al. (2009) The Impact of the Demographic Transition on Dengue in Thailand: Insights from a Statistical Analysis and Mathematical Modeling. PLoS Med 6(9): e1000139. <u>https://doi.org/10.1371/journal.pmed.1000139</u>

Endy TP, Anderson KB, Nisalak A, Yoon I-K, Green S, Rothman AL, et al. (2011) Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 5(3): e975. <u>https:// doi.org/10.1371/journal.pntd.0000975</u>.

Cuong, H. Q., Vu, N. T., Cazelles, B., Boni, M. F., Thai, K. T., Rabaa, M. A., Quang, L. C., Simmons, C. P., Huu, T. N., & Anders, K. L. (2013). Spatiotemporal dynamics of dengue epidemics, southern Vietnam. Emerging infectious diseases, 19(6), 945–953. <u>https:// doi.org/10.3201/eid1906.121323</u>.

W	Ek	R Sı	i Li	ank	a – 1	Vol	. 50	Nc). 28	8												80	th_	14 ^t	h J	uly	2	023	
Tab	le 1	: Se	elec	ted	noti	fiab	e d	isea	ses	rep	orte	ed b	y M	edic	al C	Offic	ers	of H	leal	th	01 st	- 07	th Ji	uly 2	2023	3 (2	7 th V	Veel	()
	*0	100	100	100	100	100	100	100	100	100	93	100	100	100	100	100	50	100	100	66	98	98	100	100	100	100	66	98	
WRCD	*	27	m	19	86	22	59	35	25	53	64	19	36	10	22	56	12	24	23	21	23	34	63	25	34	29	40	36	
nania-	~	ъ	29	Ч	20	184	Ч	2	356	110	2	0	0	8	ъ	Ч	2	Ч	285	16	318	253	23	104	110	23	0	1859	
Leishmania-	AB	0	0	0	2	8	0	0	6	S	0	0	0		0	0	0	0	11	H	12	14	ω	7	4	Ŋ	0	17	
gitis	В	27	45	57	18	4	8	14	16	15	9	0	7	ς	0	24	12	20	98	35	30	13	30	45	109	39	22	697	
Meningitis	A	2	4	പ	2	0	0	2	0		0	0	0	0	0	0	0	0	4	2	0	0	ω	0		4	0	30	
Chickenpox	В	169	158	263	156	31	81	204	94	165	114	12	7	19	12	46	20	36	298	77	147	52	107	50	107	256	4	2719	
Chick	A	ъ	ъ	8	9	0	12	7	2	ъ	0	0	0	ഹ	0	ч	0	2	11	ω	ω	m	ω	2	2	9	0	91	
an	в	0	0			0	0	ч	0	2	н	0	0	0	0	н	0	0	2	0	0	0	0		2	0	0	12	
Human	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	Ч	0	0	Р	
	в	m	11	4	ω	m	4		∞	m	2	0	0			ъ		0	6		7	12	64	17	12	m	0	170	
Viral	۲	0	7	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	Μ	0	0	0	0	~	
SU	В	0	~		39	11	48	29	51	20	476	9	ъ	8	ъ	Ч	0	14	6	7	28	ъ	30	30	18	22	H	871	
Typhus	A	0	0	0	2		S			0	Μ	0	0		0	0	0	Η	0	0	0	0	Η		0	0	0	17	
ptospirosis	в	190	336	506	163	110	72	558	202	370	8	7	30	25	29	64	22	55	234	36	218	129	211	396	735	432	35	5173	
Lepto	A	14	18	21	12	m	6	18	m	16	0	0	0	0	0	н	2	0	ъ	7	9	m	15	2	42	31	Η	22	
Food Poi-	ш	~	m	S	12	8	40	21	8	12	16	16	0	0	12	18	0	64	9	н	2	9	27	0	14	8	0	306	
	۲	0		0	0	0	2	2	0	-	0	0	0	0			0	47	2	0	0	0	0	0		0	0	58	
Enteric Fever	В		m	0	~	H	m	Ŋ		Ч	6	0		0	m	ъ	0	0	0	Ч		0	0	0	2	2	0	46	
Ente	۲	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
Encephalit	ш	10	13		0	0	2	12	Μ	9	2	0	0		0	9		Η	~		0	Ŋ	S	Ŋ	13	2	10	106	
	۲	0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	2	0	0	Ч	0	4	
Dysentery	В	~	11	14	. 25	2	83	32	9	19	. 52	~	9	0	6	135	1	14	. 26	8	9	10	ł 26	15	. 29	. 14	4	2 606	
<u>6</u>	A	0	m -	0		0	m	2	0	0		2	0	0	0	0	0	. 2		0		0	4	0			0	9 22	
Dengue Fever	ш	9387	9800	3184	3676	876	147	1489	1040	1121	1661	76	73	115	93	1917	71	1884	2114	2636	561	444	700	394	1448	1977	1535	48419	
Dengu	A	360	314	66	285	26	11	73	52	69	27	m	0	0	2	62	7	23	86	35	53	13	32	18	69	105	17	1806	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

WER Sri Lanka - Vol. 50 No. 28

Table 2: Vaccine-Preventable Diseases & AFP

08th- 14th July 2023

01st-07th July 2023(27th Week)

Disease	No.	of Ca	ases	by P	rovin	ice		Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date			
	W	С	S	Ν	E	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022	
AFP*	00	00	01	00	00	00	00	00	00	01	00	49	43	4.6 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	00	00	00	00	00	01	00	00	01	01	113	35	220 %	
Measles	02	01	01	00	00	00	00	01	00	05	01	45	13	207.6 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	01	00	00	00	00	00	00	00	01	00	06	05	0 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	02	07	- 71.4 %	
Whooping Cough	01	00	00	00	00	00	00	00	00	01	00	05	01	300 %	
Tuberculosis	81	08	10	00	05	28	14	07	12	165	00	4789	3050	51.6 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10