

RI LANKA 202

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 50 No. 26

24th- 30th June 2023

Infectious Disease Surveillance Part I

This is the first article of series of two artcles named as Infectious Disease Surveillance

described with examples below.

Goals of Infectious Disease Surveillance

An important epidemiological tool to monitor the health of a population is Infectious Disease Surveillance (IDS).

The goals of IDS are threefold:

•To describe the current burden and epidemiology of the disease - critical for demonstrating need of advocating for interventions e.g. vaccination, mass drug administration

 To monitor trends – to assess impact of interventions like vaccinations. Also, to not only measure number of cases, but the etiology of cases as well.

•To identify outbreaks and new pathogens - ongoing surveillance for outbreak and epidemic prone diseases can facilitate early detection, allowing a faster response and therefore mitigation of the outbreak.

Surveillance also monitors the CONTROL, ELIMINATION and ERADICATION of diseases.

Infectious Disease Surveillance (IDS) can have different approaches based on the epidemiology and clinical presentation of the disease and the goals of surveillance. The distinctions between IDS methods are

Active versus Passive Surveillance

Passive surveillance systems involve medical professionals at community level and in health facilities reporting cases to a designated public health agency, which conducts data management and analysis accordingly. While the public health staff do not directly engage in identifying cases but will assess data completeness and reliability of the reported cases. Notifiable disease surveillance is an example of this method. Notifiable diseases are of public health importance as they have either been considered to be a severe risk to human health, outbreak prone, an emerging / reemerging disease, or having a timely intervention for control of the disease. All countries mandate which diseases are notifiable based on the country epidemiology. Globally, the WHO defines what is notifiable by every country to WHO such as Ebola. Another example of passive surveillance is routinely gathered data such as vital statistics. In contrast, active surveillance requires public health staff to engage actively and take action to receive reports of disease cases. It can involve calling/ visiting health facilities to encourage follow-up or having medical reviews to identify cases meeting case definitions. While active surveillance aims to detect every case, passive surveillance is likely to miss cases due to the reporting structure. Although active surveillance is more comprehensive, it requires significant human and financial resources, so passive surveillance is often implemented. Active surveillance entails several approaches, including country-wide (e.g. polio, measles, rubella) or restricted to sentinel sites (e.g. SARI/ILI). For some diseases, surveillance be a mixture of passive and active where

Contents

Page 1. Infectious Disease Surveillance Part I 1 2. Summary of selected notifiable diseases reported (17th - 23rd June 2023) \mathcal{B} 3. Surveillance of vaccine preventable diseases & AFP (17th - 23rd June 2023) 4

WER Sri Lanka – Vol. 50 No . 26

the passive surveillance is complemented by active surveillance to investigate outbreak signals detected through passive surveillance.

Identifying cases in medical facilities and the community

Choosing the place of conducting surveillance is based on a number of considerations: severity of the disease, mode of presentation, importance of finding every single case, how outbreak prone is the disease. Infectious disease cases can be identified at the medical facilities or in the community. More severe cases of disease can often be identified at hospitals (e.g. SARI/ILI). For some diseases (e.g. Ebola), where community fears may prevent cases from going to seek healthcare, hospital surveillance would be insufficient. Milder cases of disease will either result in visits to OPDs or not seeking care at all. In such instances, community-based surveillance is useful for surveying diseases targeted for eradication because all cases must be traced and is not limited to those severe enough to be admitted to hospitals or those that have access to health care facility. An example would be the Public Health Midwives (PHMs) referring to the MOH, if they come across individuals in the community with maculopapular rash (suspected measles/rubella case); especially as Sri Lanka has currently achieved elimination status in respect to measles and congenital rubella. Acute Flaccid Paralysis (AFP) surveillance is an active surveillance network that aims to identify every case of polio, which is currently targeted for eradication. Suspected cases are sought in the community and health facilities to identify any unreported cases.

Sentinel versus Population-Based Surveillance

Sentinel surveillance involves a single OR small number of health facilities that are responsible for collecting data on cases enrolled with the case definition under surveillance. Sentinel site surveillance provides useful epidemiological information on proportions caused by different pathogens, age distribution and risk factors and could also be used for monitoring trends of hospitalized case within a health facility. Often data gathered in this manner is of higher quality. In contrast, populationbased surveillance involves every appropriate health facility reporting on predefined diseases with the goal of identifying all cases in a specific geographic area. Can represent the whole country or a defined subnational population. Also, since the population is defined, sites of surveillance can produce rates of disease, which allows for comparisons between other population-based surveillance sites. However, this method is more costly than sentinel site surveillance but produces data that is more generalizable on disease incidence.

Case-Based versus Aggregated Surveillance

The main feature of *aggregate surveillance* data is that it lacks detailed information on specific cases but typically includes data on number of cases for a specific region and time period. This info can be used to monitor number of cases but lacks the individual-level data required for specific analyses. An example is the Integrated Disease Surveillance and Response (IDSR) framework by the CDC which asks clinicians to report the number of cases of specific diseases.

Case-based surveillance refers to surveillance systems that collect information about each case at individual level. This system usually has a case investigation form where relevant info on the patient, family members, medical and lab records could be documented. These two surveillance systems can transition to each other when required, for example in the 2009 H1N1 outbreak, where a case-based transitioned into an aggregate system due to overwhelming case number. The reverse is also common for example in a disease such as measles. Measles surveillance began as an aggregate system due to being endemic in several countries in the 90s. As it moved away from control towards elimination, the surveillance system moved towards being case-based, to ensure that every case is reported and investigated. A key advantage of this surveillance is that it allows to analyze which age cohorts are being infected and their individual vaccination status to help to target vaccination efforts and close existing immunity gaps (to be continued).

Source:

Cohen, A.L., Murray, J. (2017). Infectious Disease Surveillance. *International Encyclopedia of Public Health*, 2nd Ed, Vol 4, 222-229. http://dx.doi.org/10.1016/B978-0-12-803678-5.00517-8

Compiled by:

Dr Dhivya A. Nathaniel Registrar in Community Medicine Epidemiology Unit

WER	Sri Lanka	- Vol.	50 N	o. 26

24th- 30th June 2023

Tab	able 1: Selected notifiable diseases reported by Medical Officers of Health 17th-23rd June 2023 (25th Week)													k)															
	C**	100	66	100	100	100	100	100	100	100	93	100	100	100	100	100	51	100	100	100	66	66	100	100	100	100	100	98	
WRCD	*	25	-	14	85	20	58	33	23	51	63	18	32	9	21	53	12	22	21	17	21	33	62	24	34	28	39	34	c
mania-	в	ъ	27	H	16	175	0	н	338	102	2	0	0	7	ъ	H	2	н	270	15	298	237	17	101	100	18	0	1739	***
Leish	A	0	2	0	н	14	0	0	2	ъ	0	0	0	0	0	0	0	0	22		2	6	н	∞	2	0	0	74	
ningitis	В	25	40	51	14	4	8	12	15	12	9	0	9	m	0	24	11	20	88	33	29	13	26	41	103	34	20	638	
Mer	۲	7	Μ		7	0	0	0	0	0	0	0	2	0	0	0	0	Μ	ω		0	0			Ŀ	0	0	m	
kenpox	в	160	145	251	146	31	64	189	92	152	111	12	Ч	14	11	41	19	33	277	74	142	49	66	46	104	240	43	2546	
Chic	۲	7	∞	Ŋ	9		ъ	ഹ	4	4	0	Μ	0			7	0	0	12	ω		7		4	Μ	10	Μ	86	
u	В	0	0	Ч	Ч	0	0	Ч	0	2		0	0	0	0	Ч	0	0	2	0	0	0	0	0	ч	0	0	10	
Huma	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	В	m	6	4	7	m	4	ч	2	7		0	0	ч	0	ഹ	Ч	0	6		2	12	60	17	12	m	0	159	:
Viral	۲	0	0	н	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	m	
sni	в	0	9		36	10	40	27	50	19	473	9	ъ	7	ъ		0	13	6	~	25	ъ	28	28	16	21	0	838	
Typh	A	0	0	0	0	0	m	0	4	0	ъ	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	13	
spirosis	в	169	312	473	144	101	60	524	197	345	8	7	27	25	29	60	20	55	225	32	207	125	181	387	665	386	34	4798	
Lepto	A	Μ	12	31	പ	9	ω	18	4	11	0	0	0	0			0		Ŀ	7	9	S	∞	~	28	17		17	
Poi-	В	7	2	ъ	12	8	38	19	8	11	16	16	0	0	11	17	0	4	4	0	2	9	27	0	13	8	0	234	
Food	A		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	m	
c Fever	В		H	0	7		2	Ŋ			6	0	Ч	0	m	ъ	0	0	0			0	0	0	2	2	0	43	-
Enteri	A	0	0	0	0	0	0	0	0	н		0	0	0	0	н	0	0	0	0	0	0	0	0	0	0	0	m	
phaliti	в	6	13		0	0	1	11	ω	9		0	0	1	0	9	Ч	1	7		0	ъ	ω	ъ	13	H	6	98	:
Ence	A	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	m	0	2	Q	:
entery	в	7	8	14	23	2	76	28	9	19	50	4	9	ъ	8	134		10	25	7	4	10	19	14	27	13	42	562	
Dys	۲			0	Μ	0		2	0	0	Μ	0	0	0	0	m	0	m	2	0	0	0	0	0		0	2	22	i
Fever	В	8685	9042	2956	3149	812	128	1322	942	1012	1610	69	71	114	87	1804	68	1827	1924	2566	506	423	642	359	1315	1796	1503	44732	
Dengue	A	373	412	161	277	49	7	85	53	71	26	ω	ω	ω	10	66	0	53	124	39	41	6	28	17	94	111	22	2137	
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Source: Weekly Returns of Communicable Diseases (esurvillance.epid.gov.Ik). T=Timeliness refers to returns received on or before 23rd June, 2023 Total number of reporting units 358 Number of reporting units data provided for the current week: 335 C**-Completeness + a = Cases reported during the current week. B = Cumulative cases for the year. Page 3

WER Sri Lanka - Vol. 50 No. 26

Table 2: Vaccine-Preventable Diseases & AFP

24th- 30th June 2023

17th-23rd June 2023(25th Week)

Disease	No. of Cases by Province										Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	W	С	S	Ν	Е	NW	NC	U	Sab	week in 2023	week in 2022	2023	2022	in 2023 & 2022	
AFP*	00	01	00	00	00	00	00	01	00	02	01	45	43	4.6 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	01	00	00	01	00	00	02	01	01	06	00	107	32	234.3 %	
Measles	02	00	00	00	01	00	00	00	00	03	00	29	12	141.6 %	
Rubella	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	05	05	0 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	02	07	- 71.4 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	04	01	300 %	
Tuberculosis	96	31	11	02	07	10	11	12	19	199	28	4450	3032	46.7 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10