

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 49 No. 47

19th – 25th Nov 2022

Infection and infertility

Infertility is a disease in the male or female reproductive system defined by the failure to achieve a pregnancy after 12 months or more of regular unprotected sexual intercourse. It could be primary or secondary. Primary infertility is the inability to achieve conception at all and secondary infertility is the inability to conception after having a previously successful conception. It is a global health issue affecting millions of lives all over the world.

According to the WHO estimates, there are about 48 million couples and 186 million individuals suffering from infertility.

Causes of infertility

Infertility can occur due to male factors, female factors, or a combination of male and female factors and may be unexplained.

Infections as a cause of infertility

Numerous studies have proven that there is a clear association between infections and infertility. And also there is evidence that it is influenced by genetic predisposition as well. Several viral, bacterial, and parasites are pathogens that have been proven to cause infertility. Some of them are sexually transmitted diseases. A few examples are here,

Viruses

- Mumps- At the very beginning of infection, the virus attacks the testes, destroying the testicular parenchyma and reducing androgen production. Therefore about 30% of males affected by mumps orchitis develop infertility.
- Human papillomavirus- It is a sexually transmitted virus. According to studies, it causes reduced sperm motility and changes the semen PH value. Hence, develops male infertility.
- Herpes simplex virus- is a proven cause of infertility for both males and females. In one study, there was a 6.3% of positivity rate for HSV among 279 females who were attending an infertility clinic. In another study, there was a 12% of HSV positivity rate among infertile men.

- Chlamydia trachomatis is the most common sexually transmitted infection all over the world. Chlamydia infections cause great medical, economic, and even social problems. The establishment of a causal relationship between chlamydia and male infertility would have important effects on public health. But is more harmful to women's fertility rather than men's. It results in pelvic inflammatory disease in females. Consequently, the tubal blockage could occur. It is a significantly preventable infection.
- Neisseria gonorrhoea also an STI.
 Proven to cause salpingitis and infertility

Parasites

•Toxoplasma gondii –is a zoonotic parasite. Zhou et al. found that Toxoplasma infection in infertile human couples was higher than that in fertile ones. It may be related to the anti-sperm antibodies that were higher in infected human couples. And also many other studies have established a relationship between T.Gondii infection and male fertility.

The impact of infections and infertility

Every human being has the right to enjoy the highest attainable physical and mental health levels. Individual couples have the right to decide on having children, the number of children, and the spacing of their children. Therefore couples with infertility have the right to address their issues and get treatment.

Equity should be maintained for all the people who seek fertility treatment/infection treatment like married couples, older persons, individuals who are not having sexual relationships, people with medical conditions, disabled people, and cancer survivors. Other disparities in to access fertility service care like poverty, marital status, unemployment, education level, and minor population should be overcome.

There are significant negative impacts of infertility on couples, the community, and the economy.

Bacteria

Co	ontents	Page
1.	Infection and infertility	1
2.	Summary of selected notifiable diseases reported (12th $-$ 18th $$ November 2022)	3
3.	Surveillance of vaccine preventable diseases & AFP (12th $-$ 18th $$ November 2022)	4

LAN

STIs have a direct impact on sexual and reproductive health through stigmatization, infertility, and pregnancy complications and can increase the risk of HIV. Drug resistance is a major threat to reducing the burden of STIs worldwide.

Addressing infertility may mitigate gender inequality. Although, either women or men can be infertile, the woman is perceived as infertile if her partner is a man in most instances. Further, women are at greater risk of violence, divorce, social stigma, stress, depression, anxiety, and low self-esteem when they are infertile. In some settings, fear of infertility can deter women and men from using contraception if they feel socially pressured to prove their fertility at an early age because of the high social value of childbearing. In that situation, they should be educated about the determinants of fertility and infertility such as infections.

And also the stigma of people with STDs has a great impact on infertility. Because people don't seek early treatment for infections that can lessen the damage to testicles and fallopian tubes. Therefore, more chance to get sterility following genital tract infections.

On the other hand, infertility and infections have a negative impact on the economy also. Couples have to spend money on treatments that are quite expensive.

Addressing challenges

Some genital tract infections are silent and difficult to detect. Therefore it might damage the reproductive tract without knowing. And also it will transmit to the sexual partner too. Diagnosis of STIs also can be missed. While the high-economic countries have widely available screening and diagnosing methods for these infections, middle- and low-income countries may not have. Even available it is often not accessible and affordable. In most countries, availability, access, and quality of intervention and treatments remain a challenge. Infertility is not yet prioritized in national health policies and reproductive health strategies in most parts of the world. And also the treatments and diagnostic procedures are rarely covered through public health financing. Moreover, a lack of trained personnel and the necessary equipment and infrastructure, and the currently high costs of treatment medicines, are major barriers even for countries that are actively addressing the needs of people with infertility.

Currently, assisted reproduction technologies are largely unavailable, inaccessible, and unaffordable, particularly in low- and middle-income countries, even though they were developed and available for more than 3 decades. Roughly, more than 5 million children are born worldwide from assisted reproduction technologies.

Prevention and actions that needed to be taken to overcome infertility

- Making government policies to mitigate the many inequalities in access to safe and effective infection treatments and fertility care
- Establishing health policies to recognize that infertility is a disease that can be prevented, thereby reducing the need for costly and poorly accessible treatments
- Incorporating fertility awareness in national comprehensive sexuality education programmes, promoting healthy lifestyles to reduce behavioural risks, including prevention, diagnosis, and early treatment of STIs, preventing complications of unsafe abortion, postpartum sepsis, and abdominal/pelvic surgery, and addressing environmental toxins associated with infertility, are policy and programmatic interventions that all governments can implement. Despite considerable efforts to identify simple interventions that can reduce risky sexual behaviour, behaviour change remains a complex challenge.
- Enabling laws and policies that regulate 3rd party reproduction and ART to ensure universal access without discrimination and to protect and promote the human

rights of all parties involved.

Compiled by:

Dr V.U. Jayasinghe, MBBS/ PG Diploma in Tuberculosis and chest diseases. Epidemiology Unit

References

https://www.nhs.uk/conditions/infertility/#:~:text=Infertility% 20is%20when%20a%20couple,every%202%20or% 203%20days).

https://www.cdc.gov/reproductivehealth/infertility/ publichealth.htm

https://www.who.int/news-room/fact-sheets/detail/infertility

 Table 1 : Water Quality Surveillance
 Number of microbiological water samples October 2022

District	MOH areas	No: Expected	No: Received
Colombo	15	90	NR
Gampaha	15	90	NR
Kalutara	12	72	NR
Kalutara NIHS	2	12	NR
Kandy	23	138	NR
Matale	13	78	0
Nuwara Eliya	13	78	NR
Galle	20	120	NR
Matara	17	102	NR
Hambantota	12	72	NR
Jaffna	12	72	NR
Kilinochchi	4	24	NR
Manner	5	30	3
Vavuniya	4	24	53
Mullatvu	5	30	NR
Batticaloa	14	84	NR
Ampara	7	42	35
Trincomalee	11	66	NR
Kurunegala	29	174	NR
Puttalam	13	78	NR
Anuradhapura	19	114	NR
Polonnaruwa	7	42	20
Badulla	16	96	NR
Moneragala	11	66	NR
Rathnapura	18	108	NR
Kegalle	11	66	4
Kalmunai	13	78	0

^{*} No of samples expected (6 / MOH area / Month) NR = Return not received

Tab	Table 1: Selected notifiable diseases reported by Medical Officers of Health 12th- 18th Nov 2022 (46th Week)																												
	*5	86	87	7	100	100	92	100	100	100	93	100	80	66	6	97	100	86	66	91	92	94	100	86	94	86	66	96	
WRCD	*	17	Ŋ	7	13	21	29	15	19	34	89	23	18	7	21	41	10	14	11	17	10	17	22	13	15	11	31	19	
Leishmania-	8	4	37	က	45	310	1	0	510	238	1	7	0	4	2	7	15	8	457	9	385	480	29	154	195	23	0	2911	
Leish	<	0	0	П	П	4	0	0	6	က	0	0	0	0	0	0	0	0	9	0	12	14	Н	9	9	0	0	63	
ngitis	8	13	39	32	14	п	8	27	19	8	17	2	18	0	3	32	41	10	48	33	48	2	21	29	74	49	36	899	
Meningitis	⋖	7	1	П	0	0	1	7	2	0	2	0	0	0	П	0	0	0	4	7	0	0	0	-	2	Н	0	25	
Chickenpox	8	20	71	117	87	20	45	82	25	26	113	2	7	31	11	4	25	51	112	25	73	25	29	89	85	113	75	1567	
Chick	⋖	Н	2	9	4	က	П	4	2	н	2	₩	0	0	1	2	0	4	2	7	3	2	4	0	3	3	0	29	
_	6	7	4	4	0	н	0	0	0	0	4	0	0	0	0	н	0	0	3	0	2	0	0	0	Н	0	0	22	
Human	<	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Нера-	B	2	13	6	∞	∞	7	9	7	က	∞	0	7	0	0	н	2	4	9		2	2	155	62	53	11	-	358	
Viral	4	0	0	0	0	П	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	m	0	0	10	
	8	H	1	4	35	7	24	40	22	18	524	12	8	П	9	0	1	33	37	6	53	П	64	35	24	23	1	963	
Typhus	<	0	0	0	0	П	0	ო	0	0	4	0		0	0	0	0	0	П	0	0	0	П	0	7	0	0	13	
Leptospirosis	В	225	275	478	187	112	68	514	257	296	27	12	33	19	33	47	106	37	250	49	186	109	253	283	086	591	31	5479	
Leptos	<	10	6	20	7	9	0	16	16	6			4	0	2	П	9	7	47	0	9	0	4	7	20	30	2	22	
Poi-	8	7	13	9	13	0	7	-	33	6	74	24	0	2	9	24	22	7	4	0	7	7	14	22	35	8	9	311	
Food Po	<	0	0	0	0	0	0	0	Н	н	2	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	9	
Encephaliti Enteric Fever	8	п	П	7	4	0	4	П	0	1	73	3	1	7	2	0	0	П	0	П	1	0	1	4	က	33	3	112	
Ente	∢	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н	0	7	
phaliti	8	4	П	1	П	0	4	П	П	7	3	0	0	П	0	11	2	0	4		3	1	3	7	9	8	1	61	
	<	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	ო	
entery	8	8	9	37	24	11	30	14	33	14	133	8	9	4	7	88	17	56	25	9	13	8	28	10	51	15	31	653	
Dyse	⋖	П	0	П	П	П	П	П	0	0	∞	0	0	0	П	7	က	0	0	0	0	2	2	0	0	0	0	24	
Dengue Fever Dysentery	8	11719	8077	3967	2008	1197	218	3329	1497	1621	3149	122	229	87	64	1159	164	1105	2503	2229	443	143	1170	484	2731	2797	1194	56406	
Deng	<	71	9/	48	82	45	2	34	21	19	79	7	15	7	2	13	2	9	29	49	7	0	62	2	22	28	41	26	
RDHS		Colombo	Gampaha	Kalutara	Kandy		NuwaraEliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi		Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapur	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmune	SRILANKA	

Table 2: Vaccine-Preventable Diseases & AFP

12th- 18th Nov 2022 (46th Week)

Disease		N	lo. of	Case	es by	y Pro	ovino	e	Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date		
	W	С	s	N	Е	NW	NC	U	Sab	week in 2022	week in 2021	2022	2021	in 2022 & 2021	
AFP*	01	00	01	00	00	00	00	00	01	03	04	73	60	21.6 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	00	01	00	01	01	00	00	00	00	03	01	84	64	31.2 %	
Measles	02	01	00	01	00	00	00	00	00	04	02	31	13	138.4%	
Rubella	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	01	05	05	0 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese En- cephalitis	00	00	00	00	01	00	00	00	00	01	00	10	04	150 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	01	00	0 %	
Tuberculosis	00	08	04	05	12	15	09	00	01	54	83	6004	4481	33.9 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Influenza Surveillance in Sentinel Hospitals - ILI & SARI													
Month	Human		Animal										
	No Total	No Positive	Infl A	Infl B	Pooled samples	Serum Samples	Positives						
November													
Source: Medical Research Institute & Veterinary Research Institute													

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10