Background

Human botulism is a serious, potentially fatal disease. However, it is relatively rare. It is an intoxication usually caused by ingestion of potent neurotoxins in contaminated foods. Person to person transmission of botulism does not occur. Botulinum toxins are ingested through improperly processed food in which bacteria or the spores survive and produce the toxins. Though mainly a foodborne intoxication, botulism can also be caused by intestinal infection in infants, wound infections and by inhalation.

Agent

Clostridium botulinum is an anaerobic bacterium (i.e. it can only grow in the absence of oxygen). *Clostridium botulinum* produces spores and they exist widely in the environment including soil, river and sea water. It produces spores that are heat-resistant and exist widely in the environment; in the absence of oxygen, they germinate, grow and then excrete toxins.

There are seven distinct forms of botulinum toxin, types A–G. Four of these (types A, B, E and rarely F) cause human botulism. Types C, D and E cause illness in other mammals, birds and fish.

Transmission

Foodborne botulism

Foodborne botulism occurs when *Clostridium botulinum* grows and produces toxins in food prior to consumption.

The growth of the bacteria and the formation of toxin occur in products with low oxygen content and certain combinations of storage temperature and preservative parameters. This happens most often in lightly preserved foods and in inadequately processed, home-canned or home-bottled foods. *Clostridium botulinum* will not grow in acidic conditions (pH less than 4.6), and therefore the toxin will not be formed in acidic foods (however, a low pH will not degrade any pre-formed toxin). Combinations of low storage temperature and salt contents and/or pH are also used to prevent the growth of the bacteria or the formation of the toxin.

The botulinum toxin has been found in a variety of foods, including low-acid preserved vegetables, such as green beans, spinach, mushrooms, and beets; fish, including canned tuna, fermented, salted and smoked fish; and meat products, such as ham and sausage. The food implicated differs between countries and reflects local eating habits and food preservation procedures. Occasionally, commercially prepared foods are involved.

Though spores of *Clostridium botulinum* are heat-resistant, the toxin produced by bacteria growing out of the spores under anaerobic conditions is destroyed by boiling (for example, at internal temperature >85°C for five minutes or longer). Therefore, ready-to-eat foods in low oxygen-packaging are more frequently involved in botulism.

Infant botulism

Infant botulism occurs mostly in infants under six months of age. Different from foodborne botulism
caused by ingestion of pre-formed toxins in food, it occurs when infants ingest *Clostridium botulinum* spores, which germinate into bacteria that colonize in the gut and release toxins. In most adults and children older than about six months, this would not happen because natural defences that develop over time prevent germination and growth of the bacterium.

Although there are several possible sources of infection for infant botulism, spore-contaminated honey has been associated with a number of cases. Parents and caregivers are therefore warned not to feed honey to the infants before the age of one year.

Wound botulism

Wound botulism is rare and occurs when the spores get into an open wound and are able to reproduce in an anaerobic environment. The symptoms are similar to the foodborne botulism, but may take up to two weeks to appear. This form of the disease has been associated with substance abuse, particularly when injecting black tar heroin.

Inhalation botulism

Inhalation botulism is rare and does not occur naturally, and it is associated with accidental or intentional (e.g. bioterrorism) events which result in release of the toxins in aerosols. Inhalation botulism exhibits a similar clinical footprint to foodborne botulism. The median lethal dose for humans has been estimated at two nanograms of botulinum toxin per kilogram of bodyweight, which is approximately three times greater than in foodborne cases.

Following inhalation, symptoms become visible between 1–3 days, with longer onset times for lower levels of intoxication. Symptoms proceed in a similar manner to ingestion of botulinum toxin.

If exposure to the toxin via aerosol inhalation is suspected, additional exposure to the patient and others must be prevented. The patient’s clothing must be removed and stored in plastic bags until it can be washed thoroughly with soap and water. The patient should shower and be decontaminated immediately.

Other types of intoxication

Waterborne botulism could theoretically result from the ingestion of the pre-formed toxin. However, as common water treatment processes (e.g. boiling, disinfection with 0.1% hypochlorite bleach solution) destroy the toxin, the risk is considered low.

Botulism of undetermined origin usually involves adult cases where no food or wound source can be identified. These cases are comparable to infant botulism and may occur when the normal gut flora has been altered as a result of surgical procedures or antibiotic therapy.

Symptoms

Early symptoms are marked fatigue, weakness and vertigo, usually followed by blurred vision, dry mouth and difficulty in swallowing and speaking. Vomiting, diarrhoea, constipation and abdominal swelling may also occur. The disease can progress to weakness in the neck and arms, after which the respiratory muscles and muscles of the lower body are affected. The paralysis may make breathing difficult. There is no fever and no loss of consciousness.

Clostridium botulinum in infants include constipation, loss of appetite, weakness, an altered cry and a striking loss of head control.

The symptoms are not caused by the bacterium itself, but by the toxin produced by the bacterium. Symptoms usually appear within 12 to 36 hours (within a minimum and maximum range of four hours to eight days) after exposure. Incidence of botulism is low, but the mortality rate is high if prompt diagnosis and appropriate, immediate treatment (early administration of antitoxin and intensive respiratory care) are not given. The disease can be fatal in 5 to 10% of cases.

Diagnosis and treatment

Diagnosis is usually based on clinical history and clinical examination followed by laboratory confirmation including demonstrating the presence of botulinum toxin in serum, stool or food, or a culture of *Clostridium botulinum* from stool, wound or food.

(Food samples associated with suspect cases must be obtained immediately, stored in properly sealed containers, and sent to laboratories in order to identify the cause and to prevent further cases).

Misdiagnosis of botulism sometimes occurs as it is often confused with stroke, Guillain-Barré syndrome or myasthenia gravis.

Antitoxin should be administered as soon as possible after a clinical diagnosis. Early administration is effective in reducing mortality rates. Severe botulism cases require supportive treatment, especially mechanical ventilation, which may be required for weeks or even months. Antibiotics are not required (except in the case of wound botulism). A vaccine against botulism exists but it is rarely used as its effectiveness has not been fully evaluated and it has demonstrated negative side effects.

Prevention

Prevention of foodborne botulism is based on good practice in food preparation particularly preservation and hygiene. Botulism may be prevented by the inactivation of the bacterial spores in heat-sterilized (e.g. retorted) or canned products or by inhibiting bacterial growth in other products. Commercial heat pasteurization (vacuum packed pasteurized products, hot smoked products) may not be sufficient to kill all spores and therefore the safety of these products must be based on preventing bacterial growth and toxin production. Refrigeration temperatures combined with salt content and/or acidic conditions will prevent the growth of the bacteria and formation of toxin.

Five Keys to Safer Food developed by the World Health Organization serve as the basis for educational programmes on prevention of botulism for food handlers and general public. They are especially important in preventing food poisoning. The Five Keys are:

- keep clean
- separate raw and cooked
- cook thoroughly
- keep food at safe temperatures
- use safe water and raw materials.

Source

Table 4: Selected notifiable diseases reported by Medical Officers of Health
13th–19th July 2013 (29th Week)

<table>
<thead>
<tr>
<th>Region</th>
<th>Dengue Fever</th>
<th>Typhoid Fever</th>
<th>Leptospirosis</th>
<th>Typhus</th>
<th>Hepatitis A</th>
<th>Hepatitis B</th>
<th>Rabies</th>
<th>Chickenpox</th>
<th>Encephalitis</th>
<th>E-Fever</th>
<th>Dengue Fever</th>
<th>Typhus</th>
<th>Leishmaniasis</th>
<th>Meningitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombo</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Gampaha</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Kandy</td>
<td>10</td>
</tr>
<tr>
<td>Ratnapura</td>
<td>20</td>
</tr>
<tr>
<td>Kandy</td>
<td>10</td>
</tr>
<tr>
<td>Ratnapura</td>
<td>20</td>
</tr>
<tr>
<td>Kandy</td>
<td>10</td>
</tr>
<tr>
<td>Ratnapura</td>
<td>20</td>
</tr>
<tr>
<td>Kandy</td>
<td>10</td>
</tr>
<tr>
<td>Ratnapura</td>
<td>20</td>
</tr>
<tr>
<td>Kandy</td>
<td>10</td>
</tr>
<tr>
<td>Ratnapura</td>
<td>20</td>
</tr>
</tbody>
</table>

Source: Weekly Bulletin of Communicable Diseases, WER-CDC

* Figures refer to returns received on or before 13th July, 2013. Total number of reporting units 393. Number of reporting units data provided for the current week 244.

A = Cases reported during the current week.
B = Cumulative cases for the year.
C = Cumulative cases for the current week.

Note: Sri Lanka - Vol. 40 No. 30 - 20th – 26th July 2013
Table 1: Vaccine-Preventable Diseases & AFP

<table>
<thead>
<tr>
<th>Disease</th>
<th>No. of Cases by Province</th>
<th>Number of cases during current week in 2013</th>
<th>Number of cases during same week in 2012</th>
<th>Total number of cases to date in 2013</th>
<th>Total number of cases to date in 2012</th>
<th>Difference between the number of cases to date in 2013 & 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP*</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>02</td>
<td>01</td>
<td>47</td>
<td>46</td>
<td>02.1 %</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mumps</td>
<td>W: 04 C: 17 S: 02 N: 05 E: 03 NW: 02 NC: 02 U: 02 Sab: 02</td>
<td>37</td>
<td>10</td>
<td>912</td>
<td>2342</td>
<td>-61.1 %</td>
</tr>
<tr>
<td>Measles</td>
<td>W: 54 C: 11 S: 23 N: 00 E: 01 NW: 08 NC: 02 U: 02 Sab: 02</td>
<td>129</td>
<td>00</td>
<td>1385</td>
<td>24</td>
<td>+5670.8 %</td>
</tr>
<tr>
<td>Rubella</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 02 NC: 00 U: 00 Sab: 02</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CRS**</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>-</td>
<td>06</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetanus</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>00</td>
<td>00</td>
<td>11</td>
<td>05</td>
<td>+120.0 %</td>
</tr>
<tr>
<td>Neonatal Tetanus</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>-</td>
<td>00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japanese Encephalitis</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Whooping Cough</td>
<td>W: 00 C: 00 S: 00 N: 00 E: 00 NW: 00 NC: 00 U: 00 Sab: 00</td>
<td>01</td>
<td>00</td>
<td>55</td>
<td>36</td>
<td>+52.7 %</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>W: 11 C: 28 S: 14 N: 01 E: 21 NW: 14 NC: 00 U: 06 Sab: 08</td>
<td>103</td>
<td>00</td>
<td>4541</td>
<td>5055</td>
<td>+10.2 %</td>
</tr>
</tbody>
</table>

Key to Table 1 & 2

Provinces:

RDHS Divisions:

Data Sources:
- Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps, Rubella, CRS.
- Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis
- CRS** = Congenital Rubella Syndrome

AFP and all clinically confirmed Vaccine Preventable Diseases except Tuberculosis and Mumps should be investigated by the MOH

Influenza Surveillance in Sentinel Hospitals - ILI & SARI

<table>
<thead>
<tr>
<th>Month</th>
<th>Human No Received</th>
<th>Infl A untyped</th>
<th>Infl B</th>
<th>A(H1N1)pdm09</th>
<th>A(H3N2)</th>
<th>RSV</th>
<th>Pooled samples</th>
<th>Serum Samples</th>
<th>Positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>54</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>355</td>
<td>520</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Medical Research Institute & Veterinary Research Institute

PRINTING OF THIS PUBLICATION IS FUNDED BY THE WORLD HEALTH ORGANIZATION (WHO).

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication.

ON STATE SERVICE

Dr. P. PALIHAWADANA
CHIEF EPIDEMIOLOGIST
EPIDEMIOLOGY UNIT
231, DE SARAM PLACE
COLOMBO 10